
Introduction to Scripts

Suppose you want to look up a filename, check if the associated file exists, and then respond accordingly,

displaying a message confirming or not confirming the file's existence. If you only need to do it once, you

can just type a sequence of commands at a terminal. However, if you need to do this multiple times,

automation is the way to go. In order to automate sets of commands you’ll need to learn how to write shell

scripts, the most common of which are used with bash. The graphic illustrates several of the benefits of

deploying scripts.

Introduction to Shell Scripts

Remember from our earlier discussion, a shell is a command line interpreter which provides the user

interface for terminal windows. It can also be used to run scripts, even in non-interactive sessions without a

terminal window, as if the commands were being directly typed in. For example typing: find . -name

"*.c" -ls at the command line accomplishes the same thing as executing a script file containing the

lines:

#!/bin/bash

find . -name "*.c" -ls

The #!/bin/bash in the first line should be recognized by anyone who has developed any kind of script

in UNIX environments. The first line of the script, that starts with #!, contains the full path of the

command interpreter (in this case /bin/bash) that is to be used on the file. As we will see on the next

screen, you have a few choices depending upon which scripting language you use.

The command interpreter is tasked with executing statements that follow it in the script. Commonly used

interpreters include: /usr/bin/perl, /bin/bash, /bin/csh, /usr/bin/python and /bin/sh.

Typing a long sequence of commands at a terminal window can be complicated, time consuming, and error

prone. By deploying shell scripts, using the command-line becomes an efficient and quick way to launch

complex sequences of steps. The fact that shell scripts are saved in a file also makes it easy to use them to

create new script variations and share standard procedures with several users.

Linux provides a wide choice of shells; exactly what is available on the system is listed in /etc/shells.

Typical choices are:

/bin/sh

/bin/bash

/bin/tcsh

/bin/csh

/bin/ksh

Most Linux users use the default bash shell, but those with long UNIX backgrounds with other shells may

want to override the default.

bash Scripts

Let's write a simple bash script that displays

a two-line message on the screen. Either

type

$ cat > exscript.sh

 #!/bin/bash

 echo "HELLO"

 echo "WORLD"

and press ENTER and CTRL-D to save the

file, or just create exscript.sh in your

favorite text editor. Then, type chmod +x

exscript.sh to make the file executable.

(The chmod +x command makes the file

executable for all users.) You can then run it

by simply typing ./exscript.sh or by doing:

$ bash exscript.sh

 HELLO

 WORLD

Note if you use the second form, you don't have to make the file executable.

Click the image to view an enlarged version.

Interactive Example Using bash Scripts

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen06a.jpg

Now, let's see how to create a more interactive example using a bash script. The user will be prompted to

enter a value, which is then displayed on the screen. The value is stored in a temporary variable, sname.

We can reference the value of a shell variable by using a $ in front of the variable name, such as $sname.

To create this script, you need to create a file named ioscript.sh in your favorite editor with the

following content:

 #!/bin/bash

 # Interactive reading of variables

 echo "ENTER YOUR NAME"

 read sname

 # Display of variable values

 echo $sname

Once again, make it executable by doing chmod +x ioscript.sh.

In the above example, when the script ./ioscript.sh is executed, the user will receive a prompt

ENTER YOUR NAME. The user then needs to enter a value and press the Enter key. The value will then be

printed out.

Additional note: The hash-tag/pound-sign/number-sign (#) is used to start comments in the script and can

be placed anywhere in the line (the rest of the line is considered a comment).

Return Values

All shell scripts generate a return

value upon finishing execution;

the value can be set with the

exit statement. Return values

permit a process to monitor the

exit state of another process often

in a parent-child relationship. This

helps to determine how this process terminated and take any appropriate steps necessary, contingent on

success or failure.

Viewing Return Values

As a script executes, one can check for a specific value or condition and return success or failure as the

result. By convention, success is returned as 0, and failure is returned as a non-zero value. An easy way to

demonstrate success and failure completion is to execute ls on a file that exists and one that doesn't, as

shown in the following example, where the return value is stored in the environment variable represented

by $?:

$ ls /etc/passwd

/etc/ passwd

$ echo $?

0

In this example, the system is able to locate the file /etc/passwd and returns a value of 0 to indicate

success; the return value is always stored in the $? environment variable. Applications often translate these

return values into meaningful messages easily understood by the user.

Section2

Basic Syntax and Special Characters

Scripts require you to follow a standard language syntax. Rules delineate how to define variables and how

to construct and format allowed statements, etc. The table lists some special character usages within bash

scripts:

Character Description

Used to add a comment, except when used as \#, or as #!

when starting a script

\
Used at the end of a line to indicate continuation on to the

next line

; Used to interpret what follows as a new command

$ Indicates what follows is a variable

Note that when # is inserted at the beginning of a line of commentary, the whole line is ignored.

This line will not get executed.

Splitting Long Commands Over Multiple Lines

Users

sometimes

need to

combine

several

commands and

statements and

even

conditionally

execute them

based on the

behaviour of

operators used in between them. This method is called chaining of commands.

The concatenation operator (\) is used to concatenate large commands over several lines in the shell.

For example, you want to copy the file /var/ftp/pub/userdata/custdata/read from server1.linux.com to

the /opt/oradba/master/abc directory on server3.linux.co.in. To perform this action, you can write the

command using the \ operator as:

scp abc@server1.linux.com:\

/var/ftp/pub/userdata/custdata/read \

abc@server3.linux.co.in:\

/opt/oradba/master/abc/

The command is divided into multiple lines to make it look readable and easier to understand. The \

operator at the end of each line combines the commands from multiple lines and executes it as one single

command.

Putting Multiple Commands on a Single Line

Sometimes you may want to

group multiple commands on a

single line. The ; (semicolon)

character is used to separate

these commands and execute

them sequentially as if they

had been typed on separate

lines.

The three commands in the following example will all execute even if the ones preceding them fail:
$ make ; make install ; make clean

However, you may want to abort subsequent commands if one fails. You can do this using the && (and)

operator as in:

$ make && make install && make clean

If the first command fails the second one will never be executed. A final refinement is to use the || (or)

operator as in:

$ cat file1 || cat file2 || cat file3

In this case, you proceed until something succeeds and then you stop executing any further steps.

Functions

A function is a code block that implements a set of operations. Functions are useful for executing

procedures multiple times perhaps with varying input variables. Functions are also often

called subroutines. Using functions in scripts requires two steps:

1. Declaring a function

2. Calling a function

The function declaration requires a name which is used to invoke it. The proper syntax is:

 function_name () {

 command...

 }

For example, the following function is named display:

 display () {

 echo "This is a sample function"

 }

The function can be as long as desired and have many statements. Once defined, the function can be called

later as many times as necessary. In the full example shown in the figure, we are also showing an often-

used refinement: how to pass an argument to the function. The first argument can be referred to as $1,

the second as $2, etc.

Click the image to view an enlarged version.

Built-in Shell Commands

Shell scripts are used to

execute sequences of

commands and other types of

statements. Commands can be

divided into the following

categories:

 Compiled applications

 Built-in bash commands

 Other scripts

Compiled applications are

binary executable files that

you can find on the

filesystem. The shell script

always has access to compiled

applications such as rm,

ls, df, vi, and gzip.

bash has many built-in

commands which can only be

used to display the output

within a terminal shell or shell

script. Sometimes these

commands have the same

name as executable programs

on the system, such as echo

which can lead to subtle

problems. bash built-in commands include and cd, pwd, echo, read, logout, printf, let, and

ulimit.

A complete list of bash built-in commands can be found in the bash man page, or by simply typing help.

Command Substitution

At times, you may need to substitute the result of a command as a portion of another command. It can be

done in two ways:

 By enclosing the inner command with backticks (`)

 By enclosing the inner command in $()

No matter the method, the innermost command will be executed in a newly launched shell environment,

and the standard output of the shell will be inserted where the command substitution was done.

Virtually any command can be executed this way. Both of these methods enable command substitution;

however, the $() method allows command nesting. New scripts should always use this more modern

method. For example:

$ cd /lib/modules/$(uname -r)/

In the above example, the output of the command "uname –r" becomes the argument for the cd

command.

Click the image to view an enlarged version.

Environment Variables

Almost all scripts use variables

containing a value, which can be

used anywhere in the script. These

variables can either be user or

system defined. Many applications

use such environment

variables (covered in the "User

Environment" chapter) for supplying

inputs, validation, and controlling

behaviour.

Some examples of standard

environment variables are HOME,

PATH, and HOST. When referenced,

environment variables must be

prefixed with the $ symbol as

in $HOME. You can view and set the

value of environment variables. For example, the following command displays the value stored in the

PATH variable:

$ echo $PATH

However, no prefix is required when setting or modifying the variable value. For example, the following

command sets the value of the MYCOLOR variable to blue:

$ MYCOLOR=blue

You can get a list of environment variables with the env, set, or printenv commands.

Exporting Variables

By default, the variables created within a script are available only to the subsequent steps of that script.

Any child processes (sub-shells) do not have automatic access to the values of these variables. To make

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen18a.jpg

them available to child processes, they must be promoted to environment variables using the export

statement as in:

export VAR=value

or

VAR=value ; export VAR

While child processes are allowed to modify the value of exported variables, the parent will not see any

changes; exported variables are not shared, but only copied.

Script Parameters

Users often need to pass parameter values to a script, such as a filename, date, etc. Scripts will take

different paths or arrive at different values according to the parameters (command arguments) that are

passed to them. These values can be text or numbers as in:

$./script.sh /tmp

$./script.sh 100 200

Within a script, the parameter or an argument is represented with a $ and a number. The table lists some of

these parameters.

Parameter Meaning

$0 Script name

$1 First parameter

$2, $3, etc. Second, third parameter, etc.

$* All parameters

$# Number of arguments

Using Script Parameters

Using your favorite text editor, create a new script file named script3.sh with the following contents:

#!/bin/bash

echo The name of this program is: $0

echo The first argument passed from the command line is: $1

echo The second argument passed from the command line is: $2

echo The third argument passed from the command line is: $3

echo All of the arguments passed from the command line are : $*

echo

echo All done with $0

Make the script executable with chmod +x. Run the script giving it three arguments as in: script3.sh

one two three, and the script is processed as follows:

$0 prints the script name: script3.sh

$1 prints the first parameter: one

$2 prints the second parameter: two

$3 prints the third parameter: three

$* prints all parameters: one two three

 The final statement becomes: All done with script3.sh

Output Redirection

Most operating systems accept input from the keyboard and display the output on the terminal. However, in

shell scripting you can send the output to a file. The process of diverting the output to a file is called output

redirection.

The > character is used to write output to a file. For example, the following command sends the output of

free to the file /tmp/free.out:

$ free > /tmp/free.out

To check the contents of the /tmp/free.out file, at the command prompt type cat

/tmp/free.out.

Two > characters (>>) will append output to a file if it exists, and act just like > if the file does not already

exist.

Input Redirection

Just as the output can be redirected to a file, the input of a command can be read from a file. The process of

reading input from a file is called input redirection and uses the < character. If you create a file called

script8.sh with the following contents:

#!/bin/bash

echo “Line count”

wc -l < /temp/free.out

and then execute it with chmod +x script8.sh ; ./script8.sh, it will count the number of

lines from the /temp/free.out file and display the results.

Section3

The if Statement

Conditional decision making using an if

statement, is a basic construct that any

useful programming or scripting language

must have.

When an if statement is used, the ensuing

actions depend on the evaluation of

specified conditions such as:

 Numerical or string comparisons

 Return value of a command (0 for

success)

 File existence or permissions

In compact form, the syntax of

an if statement is:

if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi

A more general definition is:

if condition
then
 statements

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/Screenshot-line-count.png

else

 statements
fi

#!/bin/bash
file=$1
if [-f $file]

then

 echo –e “plik $file istnieje”
else

 echo –e “plik $file” nie istnieje”
fi

$ touch plik1 plik2 plik3 plik5

$ ls plik*

plik1 plik2 plik3 plik5

$ bash if-demo.sh plik1

plik plik1 istnieje

$ bash if-demo.sh plik4

plik plik4 nie istnieje

Nested if

#!/bin/bash

echo “Wpisz pierwsza liczbe”

read arg1

echo „Wpisz druga liczbe”

read arg2

echo „1. Dodawanie”

echo „2. Odejnowanie”

echo „3. Mnozenie”

echo „Wprowadz numer operacji: 1, 2 lub 3”

read op

if [$op –eq 1]

 echo “Wynik dodawania: “ $(($l1+$l2))

else

 if [$op –eq 2]

 then

 echo “wynik odejmowania: “ $(($l1-$l2))

 else

 if [$op –eq 3]

 then

 echo “Wynik mnozenia: “ $(($l1*$l2))

 else

 echo “Nie prawidlowa operacja”

 fi

 fi

fi

Konstrukcja elif

#!/bin/bash

echo „podaj liczbe”

read liczba

if [$liczba –eq 100]

then

 echo “liczba wynosi 100”

elif [$liczba –gt 100]

 echo „liczba jest wieksza od 100”

else

 echo „liczba jest mniejsza od 100”

fi

Using the if Statement

The following if statement checks for the

/etc/passwd file, and if the file is found it

displays the message

/etc/passwd exists.:

if [-f /etc/passwd]
then
 echo "/etc/passwd exists."
fi

Notice the use of the square brackets ([]) to

delineate the test condition. There are many

other kinds of tests you can perform, such as

checking whether two numbers are equal to, greater than, or less than each other and make a decision

accordingly; we will discuss these other tests.

In modern scripts you may see doubled brackets as in[[-f /etc/passwd]]. This is not an error. It

is never wrong to do so and it avoids some subtle problems such as referring to an empty environment

variable without surrounding it in double quotes; we won't talk about this here.

You can use the if statement to test for file attributes such as:

 File or directory existence

 Read or write permission

 Executable permission

For example, in the following example:
if [-f /etc/passwd] ; then
 ACTION
fi

the if statement checks if the file /etc/passwd is a regular file.

Note the very common practice of putting “; then” on the same line as the if statement.

bash provides a set of file conditionals, that can used with the if statement, including:

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen30a.jpg

Condition Meaning

-e file Check if the file exists.

-d file Check if the file is a directory.

-f file
Check if the file is a regular file (i.e., not a

symbolic link, device node, directory, etc.)

-s file Check if the file is of non-zero size.

-g file Check if the file has sgid set.

-u file Check if the file has suid set.

-r file Check if the file is readable.

-w file Check if the file is writable.

-x file Check if the file is executable.

You can view the full list of file conditions using the command man 1 test.

Example of Testing of Strings

You can use the if statement to compare strings using the operator == (two equal signs). The syntax is as

follows:

if [string1 == string2] ; then

 ACTION

fi

Let’s now consider an example of testing strings.

In the example illustrated here, the if statement is used to compare the input provided by the user and

accordingly display the result.

Click the image to view an enlarged version

Numerical Tests

You can use specially defined operators with the if statement to compare numbers. The various operators

that are available are listed in the table.

Operator Meaning

-eq Equal to

-ne Not equal to

-gt Greater than

-lt Less than

-ge Greater than or equal to

-le Less than or equal to

The syntax for comparing numbers is as follows:
exp1 -op exp2

Example of Testing for Numbers

Let us now consider an example of comparing numbers using the various operators:

Click the image to view an enlarged version.

Arithmetic Expressions

Arithmetic expressions can be evaluated in the

following three ways (spaces are important!):

 Using the expr utility: expr is a standard

but somewhat deprecated program. The

syntax is as follows:

expr 8 + 8

echo $(expr 8 + 8)

 Using the $((...)) syntax: This is the

built-in shell format. The syntax is as

follows:

echo $((x+1))

 Using the built-in shell command let. The syntax is as follows:

let x=(1 + 2); echo $x

In modern shell scripts the use of expr is better replaced with var=$((...))

Click the image to view an enlarged version.

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen44.jpg

Section 1

String Manipulation

Let’s go deeper and find out how to work with strings in scripts.

A string variable contains a sequence of text characters. It can include letters, numbers, symbols and

punctuation marks. Some examples: abcde, 123, abcde 123, abcde-123, &acbde=%123

String operators include those that do comparison, sorting, and finding the length. The following table

demonstrates the use of some basic string operators.

Operator Meaning

[string1 > string2]
Compares the sorting order of string1

and string2.

[string1 == string2]
Compares the characters in string1 with

the characters in string2.

myLen1=${#mystring1}
Saves the length of string1 in the variable

myLen1.

Example of String Manipulation

See the screen shot above.

In the first example, we compare the first string with the second string and display an appropriate message

using the if statement.

In the second example, we pass in a file name and see if that file exists in the current directory or not.

Click the image to view an enlarged version.

Parts of a String

At times, you may not need to compare or use

an entire string. To extract the first character

of a string we can specify:

${string:0:1} Here 0 is the offset in the

string (i.e., which character to begin from)

where the extraction needs to start and 1 is the

number of characters to be extracted.

To extract all characters in a string after a dot (.), use the following expression: ${string#*.}

Sekcja3

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch15_screen05b.jpg

Boolean Expressions

Boolean expressions evaluate to either TRUE or FALSE, and results are obtained using the various

Boolean operators listed in the table.

Operator Operation Meaning

&& AND
The action will be performed only if both the

conditions evaluate to true.

|| OR
The action will be performed if any one of the

conditions evaluate to true.

! NOT
The action will be performed only if the

condition evaluates to false.

Note that if you have multiple conditions strung together with the && operator processing stops as soon as a

condition evaluates to false. For example if you have A && B && C and A is true but B is false, C will

never be executed.

Likewise if you are using the || operator, processing stops as soon as anything is true. For example if you

have A || B || C and A is false and B is true, you will also never execute C.

Tests in Boolean Expressions

Boolean expressions return either TRUE or FALSE. We can use such expressions when working with

multiple data types including strings or numbers as well as with files. For example, to check if a file exists,

use the following conditional test:

[-e <filename>]

Similarly, to check if the value of number1 is greater than the value of number2, use the following

conditional test:

[$number1 -gt $number2]

The operator -gt returns TRUE if number1 is greater than number2.

sekcja3

The case Statement

The case statement is used in scenarios where the actual value of a variable can lead to different execution

paths. case statements are often used to handle command-line options.

Below are some of the advantages of using the case statement:

 It is easier to read and write.

 It is a good alternative to nested, multi-level if-then-else-fi code blocks.

 It enables you to compare a variable against several values at once.

 It reduces the complexity of a program.

 Structure of the case Statement
 Here is the basic structure of the

case statement:

 case expression in

 pattern1) execute

commands;;

 pattern2) execute

commands;;

 pattern3) execute

commands;;

 pattern4) execute

commands;;

 *) execute

some default commands or

nothing ;;

esac

Example of the case Statement

Here's an example of a case statement, please click on the image to open it in a new tab.

Sekcja4

Looping Constructs

By using looping constructs, you can execute one or

more lines of code repetitively. Usually you do this until a

conditional test returns either true or false as is required.

Three type of loops are often used in most programming

languages:

 for

 while

 until

All these loops are easily used for repeating a set of

statements until the exit condition is true.

The 'for' Loop

The for loop operates on each element of a list of items. The syntax for the for loop is:

for variable-name in list

do

 execute one iteration for each item in the

 list until the list is finished

done

In this case, variable-name and list are substituted by you as appropriate (see examples). As with

other looping constructs, the statements that are repeated should be enclosed by do and done.

The screenshots here show an example of the for loop to print the sum of numbers 1 to 4.

Click the image to view an enlarged version.

The while Loop

The while loop repeats a set of statements as long as the control command returns true. The syntax is:

while condition is true

do

 Commands for execution

done

The set of commands that need to be repeated should be enclosed between do and done. You can use any

command or operator as the condition. Often it is enclosed within square brackets ([]).

The screenshots here show an example of the while loop that calculates the factorial of a number.

Click the image to view an enlarged version.

The until loop

The until loop repeats a set of statements as long as the control command is false. Thus it is essentially

the opposite of the while loop. The syntax is:

until condition is false

do

 Commands for execution

done

Similar to the while loop, the set of commands that need to be repeated should be enclosed

between do and done. You can use any command or operator as the condition.

The screenshot here shows example of the until loop that displays odd numbers between 1 and 10.

Section5

Introduction to Script Debugging

While working with scripts and

commands, you may run into errors.

These may be due to an error in the

script, such as incorrect syntax, or

other ingredients such as a missing

file or insufficient permission to do

an operation. These errors may be

reported with a specific error code,

but often just yield incorrect or

confusing output. So how do you go

about identifying and fixing an

error?

Debugging helps you troubleshoot

and resolve such errors, and is one

of the most important tasks a system

administrator performs.

More About Script

Debugging

Before fixing an error (or bug), it is vital to know its source.

In bash shell scripting, you can run a script in debug mode by doing bash –x ./script_file.

Debug mode helps identify the error because:

 It traces and prefixes each command with the + character.

 It displays each command before executing it.

 It can debug only selected parts of a script (if desired) with:
set -x # turns on debugging

...

set +x # turns off debugging

 Redirecting Errors to File and Screen
 In UNIX/Linux, all programs that run are given three open file streams when they are started as

listed in the table:

File stream Description
File

Descriptor

stdin

Standard Input, by default the

keyboard/terminal for programs run from

the command line

0

stdout
Standard output, by default the screen for

programs run from the command line
1

stderr
Standard error, where output error

messages are shown or saved
2

 Using redirection we can save the stdout and stderr output streams to one file or two separate files

for later analysis after a program or command is executed

 On the left screen is a buggy shell script. On the right screen the buggy script is executed and the

errors are redirected to the file "error.txt". Using "cat" to display the contents of

"error.txt" shows the errors of executing the buggy shell script (presumably for further debugging).

Czesc3

Section1

Creating Temporary Files and Directories

Consider a situation where you want to retrieve 100 records from a file with 10,000 records. You will need

a place to store the extracted information, perhaps in a temporary file, while you do further processing on

it.

Temporary files (and directories) are meant to store data for a short time. Usually one arranges it so that

these files disappear when the program using them terminates. While you can also use touch to create a

temporary file, this may make it easy for hackers to gain access to your data.

The best practice is to create random and unpredictable filenames for temporary storage. One way to do

this is with the mktemp utility as in these examples:

The XXXXXXXX is replaced by the mktemp utility with random characters to ensure the name of the

temporary file cannot be easily predicted and is only known within your program.

Command Usage

TEMP=$(mktemp

/tmp/tempfile.XXXXXXXX)
To create a temporary file

TEMPDIR=$(mktemp -d

/tmp/tempdir.XXXXXXXX)
To create a temporary

directory

Example of Creating a Temporary File and Directory

First, the danger: If someone creates a symbolic link from a known temporary file used by root to the

/etc/passwd file, like this:

$ ln -s /etc/passwd /tmp/tempfile

There could be a big problem if a script run by root has a line in like this:

echo $VAR > /tmp/tempfile

The password file will be overwritten by the temporary file contents.

To prevent such a situation make sure you randomize your temporary filenames by replacing the above line

with the following lines:

TEMP=$(mktemp /tmp/tempfile.XXXXXXXX)
echo $VAR > $TEMP

Click the image to view an enlarged version.

Discarding Output with /dev/null

Certain commands like find will produce voluminous amounts of output which can overwhelm the console.

To avoid this, we can redirect the large output to a special file (a device node) called /dev/null. This file is

also called the bit bucket or black hole.

It discards all data that gets written to it and never returns a failure on write operations. Using the proper

redirection operators, it can make the output disappear from commands that would normally generate

output to stdout and/or stderr:

$ find / > /dev/null

In the above command, the entire standard output stream is ignored, but any errors will still appear on the

console.

Click the image to view an enlarged version.

Random Numbers and Data

It is often useful to generate random numbers and other random data when performing tasks such as:

 Performing security-related tasks.

 Reinitializing storage devices.

 Erasing and/or obscuring existing data.

 Generating meaningless data to be used for tests.

Such random numbers can be generated by using the $RANDOM environment variable, which is derived

from the Linux kernel’s built-in random number generator, or by the OpenSSL library function, which uses

the FIPS140 algorithm to generate random numbers for encryption

To read more about FIPS140, see http://en.wikipedia.org/wiki/FIPS_140-2

The example shows you how to easily use the environmental variable method to generate random numbers.

How the Kernel Generates Random Numbers

http://en.wikipedia.org/wiki/FIPS_140-2

Some servers have hardware random number generators that take as input different types of noise signals,

such as thermal noise and photoelectric effect. A transducer converts this noise into an electric signal,

which is again converted into a digital number by an A-D converter. This number is considered random.

However, most common computers do not contain such specialized hardware and instead rely on events

created during booting to create the raw data needed.

Regardless of which of these two sources is used, the system maintains a so-called entropy pool of these

digital numbers/random bits. Random numbers are created from this entropy pool.

The Linux kernel offers the /dev/random and /dev/urandom device nodes which draw on the entropy pool

to provide random numbers which are drawn from the estimated number of bits of noise in the entropy

pool.

/dev/random is used where very high quality randomness is required, such as one-time pad or key

generation, but it is relatively slow to provide vaules. /dev/urandom is faster and suitable (good enough)

for most cryptographic purposes.

Furthermore, when the entropy pool is empty, /dev/random is blocked and does not generate any number

until additional environmental noise (network traffic, mouse movement, etc.) is gathered whereas

/dev/urandom reuses the internal pool to produce more pseudo-random bits.

Czesc3

Sekcja1

What Is a Process?

A process is

simply an instance

of one or more

related tasks

(threads) executing on your computer. It is not the same as a program or a command; a single program

may actually start several processes simultaneously. Some processes are independent of each other and

others are related. A failure of one process may or may not affect the others running on the system.

Processes use many system resources, such as memory, CPU (central processing unit) cycles, and

peripheral devices such as printers and displays. The operating system (especially the kernel) is responsible

for allocating a proper share of these resources to each process and ensuring overall optimum utilization.

Process Types

A terminal window (one kind of command shell), is a process that runs as long as needed. It allows users to

execute programs and access resources in an interactive environment. You can also run programs in the

background, which means they become detached from the shell.

Processes can be of different types according to the task being performed. Here are some different process

types along with their descriptions and examples.

Process

Type
Description Example

Interactive

Processes

Need to be started by a user, either at a

command line or through a graphical interface

such as an icon or a menu selection.

bash,

firefox, top

Batch

Processes

Automatic processes which are scheduled from

and then disconnected from the terminal. These
updatedb

tasks are queued and work on a FIFO (First In,

First Out) basis.

Daemons

Server processes that run continuously. Many

are launched during system startup and then wait

for a user or system request indicating that their

service is required.

httpd,

xinetd,

sshd

Threads

Lightweight processes. These are tasks that run

under the umbrella of a main process, sharing

memory and other resources, but are scheduled

and run by the system on an individual basis. An

individual thread can end without terminating

the whole process and a process can create new

threads at any time. Many non-trivial programs

are multi-threaded.

gnome-

terminal,

firefox

Kernel

Threads

Kernel tasks that users neither start nor terminate

and have little control over. These may perform

actions like moving a thread from one CPU to

another, or making sure input/output operations

to disk are completed.

kswapd0,

migration,

ksoftirqd

Process Scheduling and States

When a process is in a so-

called running state, it

means it is either currently

executing instructions on a

CPU, or is waiting for a

share (or time slice) so it

can run. A critical kernel

routine called the scheduler

constantly shifts processes

in and out of the CPU,

sharing time according to

relative priority, how much

time is needed and how

much has already been

granted to a task. All

processes in this state reside

on what is called a run

queue and on a computer

with multiple CPUs, or cores, there is a run queue on each.

However, sometimes processes go into what is called a sleep state, generally when they are waiting for

something to happen before they can resume, perhaps for the user to type something. In this condition a

process is sitting in a wait queue.

There are some other less frequent process states, especially when a process is terminating. Sometimes a

child process completes but its parent process has not asked about its state. Amusingly such a process is

said to be in a zombie state; it is not really alive but still shows up in the system's list of processes.

Process and Thread IDs

At any given time there are always multiple processes being executed. The operating system keeps track of

them by assigning each a unique process ID (PID) number. The PID is used to track process state, cpu

usage, memory use, precisely where resources are located in memory, and other characteristics.

New PIDs are usually assigned in ascending order as processes are born. Thus PID 1 denotes the init

process (initialization process), and succeeding processes are gradually assigned higher numbers.

The table explains the PID types and their descriptions:

ID Type Description

Process ID (PID) Unique Process ID number

Parent Process ID (PPID)
Process (Parent) that started this

process

Thread ID (TID)

Thread ID number. This is the same as

the PID for single-threaded processes.

For a multi-threaded process, each

thread shares the same PID but has a

unique TID.

User and Group IDs

Many users can access a

system simultaneously, and

each user can run multiple

processes. The operating

system identifies the user who

starts the process by the Real

User ID (RUID) assigned to

the user.

The user who determines the

access rights for the users is

identified by the Effective UID

(EUID). The EUID may or

may not be the same as the

RUID.

Users can be categorized into

various groups. Each group is

identified by the Real Group

ID, or RGID. The access rights of the group are determined by the Effective Group ID, or EGID. Each

user can be a member of one or more groups.

Most of the time we ignore these details and just talk about the User ID (UID).

More About Priorities

At any given time,

many processes are

running (i.e., in the

run queue) on the

system. However, a

CPU can actually

accommodate only

one task at a time,

just like a car can

have only one driver

at a time. Some

processes are more important than others so Linux allows you to set and manipulate process priority.

Higher priority processes are granted more time on the CPU.

The priority for a process can be set by specifying a nice value, or niceness, for the process. The lower the

nice value, the higher the priority. Low values are assigned to important processes, while high values are

assigned to processes that can wait longer. A process with a high nice value simply allows other processes

to be executed first. In Linux, a nice value of -20 represents the highest priority and 19 represents the

lowest. (This does sound kind of backwards, but this convention, the nicer the process, the lower the

priority, goes back to the earliest days of UNIX.)

You can also assign a so-called real-time priority to time-sensitive tasks, such as controlling machines

through a computer or collecting incoming data. This is just a very high priority and is not to be confused

with what is called hard real time which is conceptually different, and has more to do with making sure a

job gets completed within a very well-defined time window.

Section2

The ps Command (System V Style)

ps provides information about currently running processes, keyed by PID. If you want a repetitive update

of this status, you can use top or commonly installed variants such as htop or atop from the command line,

or invoke your distribution's graphical system monitor application.

ps has many options for specifying exactly which tasks to examine, what information to display about

them, and precisely what output format should be used.

Without options ps will display all processes running under the current shell. You can use the -u option to

display information of processes for a specified username. The command ps -ef displays all the

processes in the system in full detail. The command ps -eLf goes one step further and displays one line

of information for every thread (remember, a process can contain multiple threads).

The ps Command (BSD Style)

ps has another style of option specification which stems from the BSD variety of UNIX, where options are

specified without preceding dashes. For example, the command ps aux displays all processes of all users.

The command ps axo allows you to specify which attributes you want to view.

The following tables shows sample output of ps with the aux and axo qualifiers.

Command Output

ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 19356 1292 ? Ss Feb27 0:08

/sbin/init

root 2 0.0 0.0 0 0 ? S Feb27 0:00

[kthreadd]

root 3 0.0 0.0 0 0 ? S Feb27 0:27

[migration/0]

 . . .

Command Output

ps aux

stat,priority,pid,pcpu,comm

STAT PRI PID %CPU COMMAND

Ss 20 1 0.0 init

S 20 2 0.0 kthreadd

S -100

3 0.0 migration/0

 . . .

The Process Tree

At some point one of your applications may stop

working properly. How might you terminate it?

pstree displays the processes running on the

system in the form of a tree diagram showing

the relationship between a process and its parent

process and any other processes that it created.

Repeated entries of a process are not displayed,

and threads are displayed in curly braces.

To terminate a process you can type kill -

SIGKILL <pid> or kill -9 <pid>.

Note however, you can only kill your own

processes: those belonging to another user are off limits unless you are root.

Click the image to view an enlarged version.

top

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen18.jpg

While a static view of what the system is doing

is useful, monitoring the system performance

live over time is also valuable. One option

would be to run ps at regular intervals, say,

every two minutes. A better alternative is to use

top to get constant real-time updates (every two

seconds by default) until you exit by typing

q. top clearly highlights which processes are

consuming the most CPU cycles and memory

(using appropriate commands from within top.)

First Line of the top Output

The first line of the top output displays a quick

summary of what is happening in the system

including:

 How long the system has been up

 How many users are logged on

 What is the load average

The load average determines how busy the

system is. A load average of 1.00 per CPU

indicates a fully subscribed, but not overloaded,

system. If the load average goes above this

value, it indicates that processes are competing

for CPU time. If the load average is very high, it might indicate that the system is having a problem, such

as a runaway process (a process in a non-responding state).

Second Line of the top Output

The second line of the top output displays the

total number of processes, the number of

running, sleeping, stopped and zombie

processes. Comparing the number of running

processes with the load average helps determine

if the system has reached its capacity or perhaps

a particular user is running too many processes.

The stopped processes should be examined to

see if everything is running correctly.

Click the image to view an enlarged version.

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen19.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen20.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen21.jpg

Third Line of the top Output

The third line of the top output indicates how

the CPU time is being divided between the users

(us) and the kernel (sy) by displaying the

percentage of CPU time used for each.

The percentage of user jobs running at a lower

priority (niceness - ni) is then listed. Idle mode

(id) should be low if the load average is high,

and vice versa. The percentage of jobs waiting

(wa) for I/O is listed. Interrupts include the

percentage of hardware (hi) vs. software

interrupts (si). Steal time (st) is generally used

with virtual machines, which has some of its idle

CPU time taken for other uses.

Click the image to view an enlarged version.

Fourth and Fifth Lines of the top Output

The fourth and fifth lines of the

top output indicate memory usage, which is

divided in two categories:

 Physical memory (RAM) – displayed on

line 4.

 Swap space – displayed on line 5.

Both categories display total memory, used

memory, and free space.

You need to monitor memory usage very

carefully to ensure good system performance.

Once the physical memory is exhausted, the system starts using swap space (temporary storage space on

the hard drive) as an extended memory pool, and since accessing disk is much slower than accessing

memory, this will negatively affect system performance.

If the system starts using swap often, you can add more swap space. However, adding more physical

memory should also be considered.

Click the image to view an enlarged version.

Process List of the top Output

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen22.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen23.jpg

Each line in the process list of the

top output displays information about a process.

By default, processes are ordered by highest

CPU usage. The following information about

each process is displayed:

 Process Identification Number (PID)

 Process owner (USER)

 Priority (PR) and nice values (NI)

 Virtual (VIRT), physical (RES), and shared

memory (SHR)

 Status (S)

 Percentage of CPU (%CPU) and memory

(%MEM) used

 Execution time (TIME+)

 Command (COMMAND)

Interactive Keys with top

Besides reporting information, top can be utilized interactively for monitoring and controlling processes.

While top is running in a terminal window you can enter single-letter commands to change its behaviour.

For example, you can view the top-ranked processes based on CPU or memory usage. If needed, you can

alter the priorities of running processes or you can stop/kill a process.

The table lists what happens when pressing various keys when running top:

Command Output

t Display or hide summary information (rows 2 and 3)

m Display or hide memory information (rows 4 and 5)

A Sort the process list by top resource consumers

r Renice (change the priority of) a specific processes

k Kill a specific process

f Enter the top configuration screen

o Interactively select a new sort order in the process list

Section3

Load Averages

Load average is the average of the load number for a given period of time. It takes into account processes

that are:

 Actively running on a CPU.

 Considered runnable, but waiting for a CPU to become available.

 Sleeping: i.e., waiting for some kind of resource (typically, I/O) to become available.

The load average can be obtained by running w, top or uptime

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen24.jpg

Interpreting Load Averages

The load average is displayed using three different sets of numbers, as shown in the following example:

The last piece of information is the average load of the system. Assuming our system is a single-CPU

system, the 0.25 means that for the past minute, on average, the system has been 25% utilized. 0.12 in the

next position means that over the past 5 minutes, on average, the system has been 12% utilized; and 0.15 in

the final position means that over the past 15 minutes, on average, the system has been 15% utilized. If we

saw a value of 1.00 in the second position, that would imply that the single-CPU system was 100% utilized,

on average, over the past 5 minutes; this is good if we want to fully use a system. A value over 1.00 for a

single-CPU system implies that the system was over-utilized: there were more processes needing CPU than

CPU was available.

If we had more than one CPU, say a quad-CPU system, we would divide the load average numbers by the

number of CPUs. In this case, for example, seeing a 1 minute load average of 4.00 implies that the system

as a whole was 100% (4.00/4) utilized during the last minute.

Short term increases are usually not a problem. A high peak you see is likely a burst of activity, not a new

level. For example, at start up, many processes start and then activity settles down. If a high peak is seen in

the 5 and 15 minute load averages, it would may be cause for concern.

Background and Foreground Processes

Linux supports background and

foreground job processing. (A job in this

context is just a command launched from a

terminal window.) Foreground jobs run directly

from the shell, and when one foreground job is

running, other jobs need to wait for shell access

(at least in that terminal window if using the

GUI) until it is completed. This is fine when

jobs complete quickly. But this can have an

adverse effect if the current job is going to take a

long time (even several hours) to complete.

In such cases, you can run the job in the

background and free the shell for other tasks.

The background job will be executed at lower

priority, which, in turn, will allow smooth

execution of the interactive tasks, and you can type other commands in the terminal window while the

background job is running. By default all jobs are executed in the foreground. You can put a job in the

background by suffixing & to the command, for example: updatedb &

You can either use CTRL-Z to suspend a foreground job or CTRL-C to terminate a foreground job and

can always use the bg and fg commands to run a process in the background and foreground, respectively.

Managing Jobs

The jobs utility displays all jobs running in

background. The display shows the job ID, state,

and command name, as shown here.

jobs -l provides a the same information as

jobs including the PID of the background jobs.

The background jobs are connected to the

terminal window, so if you log off,

the jobs utility will not show the ones started

from that window.

Click the image to view an enlarged version.

Section4

Scheduling Future Processes using at

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen35.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen36.jpg

Suppose you need to perform a task on a specific day sometime in the future. However, you know you will

be away from the machine on that day. How will you perform the task? You can use the at utility program

to execute any non-interactive command at a specified time, as illustrated in the diagram:

cron

cron is a time-based scheduling utility program. It can launch routine background jobs at specific times

and/or days on an on-going basis. cron is driven by a configuration file called /etc/crontab (cron

table) which contains the various shell commands that need to be run at the properly scheduled times.

There are both system-wide crontab files and individual user-based ones. Each line of a crontab file

represents a job, and is composed of a so-called CRON expression, followed by a shell command to

execute.

The crontab -e command will open the crontab editor to edit existing jobs or to create new jobs. Each

line of the crontab file will contain 6 fields:

Field Description Values

MIN Minutes 0 to 59

HOUR Hour field 0 to 23

DOM Day of Month 1-31

MON Month field 1-12

DOW Day Of Week 0-6 (0 = Sunday)

CMD Command
Any command to be

executed

Examples:

1. The entry "* * * * * /usr/local/bin/execute/this/script.sh" will schedule a job to execute 'script.sh' every

minute of every hour of every day of the month, and every month and every day in the week.

2. The entry "30 08 10 06 * /home/sysadmin/full-backup" will schedule a full-backup at 8.30am, 10-June

irrespective of the day of the week.

sleep

Sometimes a command or job must be

delayed or suspended. Suppose, for

example, an application has read and

processed the contents of a data file and

then needs to save a report on a backup

system. If the backup system is currently

busy or not available, the application can be

made to sleep (wait) until it can complete

its work. Such a delay might be to mount

the backup device and prepare it for writing.

sleep suspends execution for at least the

specified period of time, which can be

given as the number of seconds (the

default), minutes, hours or days. After that

time has passed (or an interrupting signal

has been received) execution will resume.

Syntax:
sleep NUMBER[SUFFIX]...

 where SUFFIX may be:

 1. s for seconds (the default)

 2. m for minutes

 3. h for hours

 4. d for days

sleep and at are quite different; sleep delays execution for a specific period while at starts execution at a

later time.

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen43.jpg

