Introduction to Scripts

Combine long and repetitve

sequences of commands
Automate tasks and into one simple command Share procedures among
reduce risk of errors several users

Features of
Shell Scripts
Provide a controlled Quick prototyping, no
interface to users Create new commands need to compile
using combination of
utilities

Suppose you want to look up a filename, check if the associated file exists, and then respond accordingly,
displaying a message confirming or not confirming the file's existence. If you only need to do it once, you
can just type a sequence of commands at a terminal. However, if you need to do this multiple times,
automation is the way to go. In order to automate sets of commands you’ll need to learn how to write shell
scripts, the most common of which are used with bash. The graphic illustrates several of the benefits of
deploying scripts.

Introduction to Shell Scripts

«® Applications Places System ‘ j_b _,‘// r o [:-?_ Mon Jul 28, 7:36 PM test3
Bl test3@CentOS:~ - o X
File Edit View Search Terminal Help

[test3@Cent0S ~]$ find . -name "*.c" -1s (A]
163017 20 -rw-rw-r-- 1 1000 1000 17890 Jun 3 12:00 ./hplip-3.14.6/prnt/hpcups/jccolo

r.c

163068 8 -rw-rw-r-- 1 1000 1000 5925 Jun 3 12:00 ./hplip-3.14.6/prnt/hpcups/jdatad

bf.c

162870 20 -rw-r--r-- 1 1000 1000 18573 Jun 3 12:03 ./hplip-3.14.6/prnt/hpijs/jccolor

G

162850 20 -rw-rw-r-- 1 1000 1000 20102 Jun 3 12:01 ./hplip-3.14.6/prnt/hpijs/ijs_ser

ver.c 2
162939 20 -rw-rw-r-- 1 1000 1000 16889 Jun 3 12:01 ./hplip-3.14.6/prnt/hpijs/hpiom.c 3
162963 8 -rw-r--r-- 1 1000 1000 6074 Jun 3 12:03 ./hplip-3.14.6/prnt/hpijs/jdatadb

Tt

162966 8 -rw-rw-r-- 1 1000 1000 4619 Jun 3 12:01 ./hplip-3.14.6/prnt/hpijs/ijs.c

163082 60 -rw-rw-r-- 1 1000 1000 57952 Jun 3 12:00 ./hplip-3.14.6/prnt/cupsext/cupse

Xtc

163078 28 -rw-rw-r-- 1 1000 1000 27939 Jun 3 12:00 ./hplip-3.14.6/prnt/backend/hp.c

162557 24 -rwxrwxr-x 1 1000 1000 22811 Jun 3 12:01 ./hplip-3.14.6/scan/scanext/scane

xt.c

162564 40 -rw-rw-r-- 1 1000 1000 37077 Jun 3 12:02 ./hplip-3.14.6/scan/sane/bb ledm.

C

162565 4 -rwxrwxr-x 1 1000 1000 3960 Jun 3 12:02 ./hplip-3.14.6/scan/sane/io.c

162560 20 -rwxrwxr-x 1 1000 1000 17188 Jun 3 12:02 ./hplip-3.14.6/scan/sane/mfpdtf.c

162581 4 -rw-rw-r-- 1 1000 1000 3771 Jun 3 12:02 ./hplip-3.14.6/scan/sane/xml.c

162582 40 -rw-rw-r-- 1 1000 1000 37140 Jun 3 12:02 ./hplip-3.14.6/scan/sane/marvell.

C

162573 112 -rw-rw-r-- 1 1000 1000 112343 Jun 3 12:02 ./hplip-3.14.6/scan/sane/sclpml.c

162569 4 -rw-rw-r-- 1 1000 1000 3038 Jun 3 12:02 ./hplip-3.14.6/scan/sane/sanei_in

it debug.c

162593 40 -rw-rw-r-- 1 1000 1000 37375 Jun 3 12:02 ./hplip-3.14.6/scan/sane/ledm.c

162587 8 -rwxrwxr-x 1 1000 1000 8037 Jun 3 12:02 ./hplip-3.14.6/scan/sane/common.c

162580 20 -rw-rw-r-- 1 1000 1000 17685 Jun 3 12:02 ./hplip-3.14.6/scan/sane/http.c

162559 12 -rwxrwxr-x 1 1000 1000 10262 Jun 3 12:02 ./hplip-3.14.6/scan/sane/scl.c

162568 32 -rwxrwxr-x 1 1000 1000 31946 Jun 3 12:02 ./hplip-3.14.6/scan/sane/pml.c

162567 16 -rw-rw-r-- 1 1000 1000 15926 Jun 3 12:02 ./hplip-3.14.6/scan/sane/hpaio.c

162595 40 -rw-rw-r-- 1 1000 1000 37252 Jun 3 12:02 ./hplip-3.14.6/scan/sane/soap.c [~

Remember from our earlier discussion, a shell is a command line interpreter which provides the user
interface for terminal windows. It can also be used to run scripts, even in non-interactive sessions without a
terminal window, as if the commands were being directly typed in. For example typing: find . -name
"x _c" -1s atthe command line accomplishes the same thing as executing a script file containing the
lines:

#!/bin/bash
find . —-name "*.c" -1s

The #! /bin/bash in the first line should be recognized by anyone who has developed any kind of script
in UNIX environments. The first line of the script, that starts with # !, contains the full path of the
command interpreter (in this case /bin/bash) that is to be used on the file. As we will see on the next
screen, you have a few choices depending upon which scripting language you use.

The command interpreter is tasked with executing statements that follow it in the script. Commonly used
interpreters include: /usr/bin/perl, /bin/bash, /bin/csh, /usr/bin/pythonand /bin/sh.

Typing a long sequence of commands at a terminal window can be complicated, time consuming, and error
prone. By deploying shell scripts, using the command-line becomes an efficient and quick way to launch
complex sequences of steps. The fact that shell scripts are saved in a file also makes it easy to use them to
create new script variations and share standard procedures with several users.

Linux provides a wide choice of shells; exactly what is available on the system is listed in /etc/shells.
Typical choices are:

/bin/sh
/bin/bash

/bin/tcsh
/bin/csh
/bin/ksh

Most Linux users use the default bash shell, but those with long UNIX backgrounds with other shells may
want to override the default.

bash Scripts

Let's write a simple bash script that displays

Pt BOT View Search Semiasl sy

a two-line message on the screen. Either [test3@Cent0S Desktop]$ cat > exscript.sh
type !/bin/bash
cho "HELLO"
echo "WORLD"
$ cat > exscript.sh [test3@Cent0S Desktop]$ bash exscript.sh
#!/bin/bash ugUﬁ
WORLD

echo "HELLO"
Coho THORLDY [test3@Cent0S Desktop]s i
and press ENTER and CTRL-D to save the
file, or just create exscript.sh inyour
favorite text editor. Then, type chmod +x
exscript.sh to make the file executable.
(The chmod +x command makes the file
executable for all users.) You can then run it._
by simply typing . /exscript.sh or by doing:

$ bash exscript.sh
HELLO
WORLD

Note if you use the second form, you don't have to make the file executable.
Click the image to view an enlarged version.

Interactive Example Using bash Scripts

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen06a.jpg

&% Applications Places System @, b i) > @ Wed Jul 9, 3:55PM test3

3} test3@Cent0OS:~ o
File Edit View Search Terminal Help
[test3@Cent0S ~]$ cat ioscript.sh (2]

#!/bin/bash

Interactive reading of variables
echo "ENTER YOUR NAME"

read sname

Display of variable values

echo $sname

[test3@Cent0S ~]$ chmod +x ioscript.sh
[test3@Cent0S ~]$./ioscript.sh
ENTER YOUR NAME

Alice

Alice

[test3@centos ~1$ I

i

Now, let's see how to create a more interactive example using a bash script. The user will be prompted to
enter a value, which is then displayed on the screen. The value is stored in a temporary variable, sname.
We can reference the value of a shell variable by using a $ in front of the variable name, such as Ssname.

To create this script, you need to create a file named ioscript. sh in your favorite editor with the
following content:

#!/bin/bash

Interactive reading of wvariables
echo "ENTER YOUR NAME"

read sname

Display of variable values

echo $sname

Once again, make it executable by doing chmod +x ioscript.sh.

In the above example, when the script . /ioscript. sh is executed, the user will receive a prompt

ENTER YOUR NAME. The user then needs to enter a value and press the Enter key. The value will then be
printed out.

Additional note: The hash-tag/pound-sign/number-sign () is used to start comments in the script and can
be placed anywhere in the line (the rest of the line is considered a comment).

Return Values

All shell scripts generate a return
value upon finishing execution;
the value can be set with the Parent
ex it statement. Return values Process
permit a process to monitor the
exit state of another process often
in a parent-child relationship. This
helps to determine how this process terminated and take any appropriate steps necessary, contingent on
success or failure.

Call Child Process

Child

Process

Returns Value to
Parent Process

Viewing Return Values

=

4% Applications Places System @ (¢ [Z [N ¢ £ Monjul2s, 7:41PM test3

test3@CentOS:~

File Edit View Search Terminal Help

[test3@Cent0S ~]$ 1s /etc/passwd

/etc/passwd

[test3@Cent0S ~]$ echo $?

0

[test3@Cent0S ~]$ 1ls filethatdoesnotexist

1s: cannot access filethatdoesnotexist: No such file or directory
[test3@Cent0S ~]$ echo $?

2

[test3@Cent0s ~1$ i

[>]

i

CIE

As a script executes, one can check for a specific value or condition and return success or failure as the
result. By convention, success is returned as 0, and failure is returned as a non-zero value. An easy way to
demonstrate success and failure completion is to execute Is on a file that exists and one that doesn't, as
shown in the following example, where the return value is stored in the environment variable represented

by $2:

$ 1ls /etc/passwd
/etc/ passwd

$ echo $°?
0

In this example, the system is able to locate the file /etc/passwd and returns a value of 0 to indicate
success; the return value is always stored in the s 2 environment variable. Applications often translate these
return values into meaningful messages easily understood by the user.

Section2

Basic Syntax and Special Characters
Scripts require you to follow a standard language syntax. Rules delineate how to define variables and how

to construct and format allowed statements, etc. The table lists some special character usages within bash
scripts:

Used to add a comment, except when used as \ #, or as # !

i when starting a script

\ Used at the end of a line to indicate continuation on to the
next line

; Used to interpret what follows as a new command

$ Indicates what follows is a variable

Note that when # is inserted at the beginning of a line of commentary, the whole line is ignored.

This line will not get executed.

Splitting Long Commands Over Multiple Lines

Users

sometimes

need to Line 1
combine

several Line 2 : Command 1 continues Jvar /ftp/pubjuserdata/custdata/read \
commands and Line 3
statements and

even Line 4 : Command 1 ends - Jopt/oradba/master fabc/|]
conditionally

execute them

based on the

behaviour of

operators used in between them. This method is called chaining of commands.

: Command 1 starts here scp abc@serveri.linux.com:)\

: Command 1 continues abcgserver3.linux.co.in)\

The concatenation operator (\) is used to concatenate large commands over several lines in the shell.

For example, you want to copy the file /var/ftp/pub/userdata/custdata/read from serverl.linux.com to
the /opt/oradba/master/abc directory on server3.linux.co.in. To perform this action, you can write the
command using the \ operator as:

scp abc@serverl.linux.com:\
/var/ftp/pub/userdata/custdata/read \
abc@server3.linux.co.in:\
/opt/oradba/master/abc/

The command is divided into multiple lines to make it look readable and easier to understand. The \
operator at the end of each line combines the commands from multiple lines and executes it as one single
command.

Putting Multiple Commands on a Single Line

Sometimes you may want to

group multiple commandsona Line 1 : Command 1; Command 2 ; Command 3
single line. The ; (semicolon)

character is used to separate cd /
these commands and execute

them sequentially as if they

had been typed on separate

lines.

: 1s : c¢d /home/student

The three commands in the following example will all execute even if the ones preceding them fail:
$ make ; make install ; make clean

However, you may want to abort subsequent commands if one fails. You can do this using the « & (and)
operator as in:

S make && make install && make clean

If the first command fails the second one will never be executed. A final refinement is to use the | | (or)
operator as in:

$ cat filel || cat file2 || cat file3
In this case, you proceed until something succeeds and then you stop executing any further steps.

Functions

«™® Applications Places System w &

A func-call-ex.sh (~) - gedit testl@localhost:~
File Edit View Search Tools Documents Help File Edit View Search Terminal Help
- v a e [testl@localhost ~]$ bash func-call-ex.sh
&= Open v QSave = Undo E | This is the message from the function
7/} The parameter passed from calling process is Bob
[, func-call-ex.sh % This is the message from the function
#1bin/bash The parameter passed from calling process is Stuart
display(){ This is the message from the function
echo "This is the me e from the function” The parameter passed from calling process is Rambo
echo "The parameter passed from calling process is" s1 || HESERCIRGIIEEELI R UIRG T TLg s]
}) The parameter passed from calling process is Bond
display "Bob’ [testl@localhost ~1$ []
display "Stuart"
display "Rambo"
display "Bond|"

A function is a code block that implements a set of operations. Functions are useful for executing
procedures multiple times perhaps with varying input variables. Functions are also often
called subroutines. Using functions in scripts requires two steps:

1. Declaring a function
2. Calling a function

The function declaration requires a name which is used to invoke it. The proper syntax is:
function name () {

command. . .

}

For example, the following function is named display:

display () {
echo "This is a sample function"

}
The function can be as long as desired and have many statements. Once defined, the function can be called
later as many times as necessary. In the full example shown in the figure, we are also showing an often-

used refinement: how to pass an argument to the function. The first argument can be referred toas $1,
the second as $2, etc.

Click the image to view an enlarged version.
Built-in Shell Commands

Shell scripts are used to
execute sequences of

commands and other types of
statements. Commands can be Types of commands
divided into the following

categories:
e Compiled applications - —~—
e Built-in bash commands Compiled Built-in Other
o Other scripts applications bash commands scripts
rm cd

Compiled applications are
binary executable files that

you can find on the s e
filesystem. The shell script df G
always has access to compiled
applications such as rm, vi reud
Is, df, vi, and gzip.

gzip logout
bash has many built-in
commands which can only be printf
used to display the output
within a terminal shell or shell let
script. Sometimes these
commands have the same ulimit

name as executable programs

on the system, such as echo

which can lead to subtle

problems. bash built-in commands include and cd, pwd, echo, read, logout, printf, let, and
ulimit.

A complete list of bash built-in commands can be found in the bash man page, or by simply typing he1p.

Command Substitution

*&% Applications Places System @ ;_b [= o = Wed Jul 30, 2:17 PM test3

test3@Cent0S:/lib/modules/2.6.32-431.20.5.el6.x86_64

File Edit View Search Terminal Help

[test3@Cent0S ~]$ uname -r
2.6.32-431.20.5.e16.x86 64

[test3@Cent0S ~]$ echo cd /lib/modules/ ‘uname -r°/
cd /lib/modules/2.6.32-431.20.5.e16.x86 64/
[test3@Cent0S ~]$ echo cd /lib/modules/$(uname -r)/
cd /lib/modules/2.6.32-431.20.5.el6.x86_64/
[test3@Cent0S ~]$ pwd

/home/test3

[test3@Cent0S ~]$ $(echo cd /lib/modules/$(uname -r)/)
[test3@Cent0S 2.6.32-431.20.5.e16.x86 64]$ pwd
/1lib/modules/2.6.32-431.20.5.e16.x86_64
[test3@Cent0S 2.6.32-431.20.5.e16.x86 64]1%

At times, you may need to substitute the result of a command as a portion of another command. It can be
done in two ways:

e By enclosing the inner command with backticks ()
e By enclosing the inner commandin s ()

No matter the method, the innermost command will be executed in a newly launched shell environment,
and the standard output of the shell will be inserted where the command substitution was done.

Virtually any command can be executed this way. Both of these methods enable command substitution;
however, the s () method allows command nesting. New scripts should always use this more modern
method. For example:

$ cd /lib/modules/S (uname -r)/

In the above example, the output of the command "uname -r" becomes the argument for the ca
command.

Click the image to view an enlarged version.

Environment Variables

Almost all scripts use variables S

P B Vew Sk e ey

containing a value, whichcanbe |[test3acent0s ~)$ echo $MYCOLOR
used anywhere in the script. These
variables can either be user or [test3@Cent0S ~)$ MYCOLOR=blue; echo $MYCOLOR
system defined. Many applications [?'v€

u)s/e such environmer)'llt i [test3gCentos ~s |

variables (covered in the "User
Environment" chapter) for supplying
inputs, validation, and controlling
behaviour.

Some examples of standard
environment variables are HOME,
PATH, and HOST. When referenced,
environment variables must be
prefixed with the s symbol as ‘
in SHOME. You can view and set the -
value of environment variables. For example, the following command displays the value stored in the
PATH variable:

S echo $PATH

However, no prefix is required when setting or modifying the variable value. For example, the following
command sets the value of the MYCOLOR variable to blue:

S MYCOLOR=blue
You can get a list of environment variables with the env, set, or printenv commands.

Exporting Variables

«® Applications Places System @ \:Q 4l = = Tuejul 8, 5:47PM test3
Bl test3@CentOS:~]
File Edit View Search Terminal Help

[test3@Cent0S ~]$ VERSION=$(uname -r); export VERSION
[test3@Cent0S ~]$ export
declare -x COLORTERM="gnome-terminal”

B

declare -x CVS RSH="ssh"

declare -x DBUS SESSION BUS ADDRESS="unix:abstract=/tmp/dbus-FNOEnF3C4H,guid=b9f778e49a223a9b58cf1f1e00000018"
declare -x DESKTOP_SESSION="gnome"

declare -x DISPLAY=":0.0"

declare -x GDMSESSION="gnome"

declare -x GDM_KEYBOARD LAYOUT="us"

declare -x GDM_LANG="en US.UTF-8"

declare -x GNOME_DESKTOP SESSION ID="this-is-deprecated"”

declare -x GNOME_KEYRING PID="2259"

declare -x GNOME_KEYRING SOCKET="/tmp/keyring-NpgxUc/socket"

declare -x GTK RC FILES="/etc/gtk/gtkrc:/home/test3/.gtkrc-1.2-gnome2"

declare -x G _BROKEN FILENAMES="1"

declare -x VERSION="2.6.32-431.20.3.el6.x86 64"

declare -x WINDOWID="71303172"

declare -x WINDOWPATH="1"

declare -x XAUTHORITY="/var/run/gdm/auth-for-test3-1rdS7v/database"

declare -x XDG_SESSION COOKIE="f2c88ffc5eeba3db045d1f7c0000000d-1404798425.42575-2021681626"

declare -x XMODIFIERS="@im=none"

[test3@Cent0S ~]$ o

By default, the variables created within a script are available only to the subsequent steps of that script.
Any child processes (sub-shells) do not have automatic access to the values of these variables. To make

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen18a.jpg

them available to child processes, they must be promoted to environment variables using the export
statement as in:

export VAR=value
or

VAR=value ; export VAR

While child processes are allowed to modify the value of exported variables, the parent will not see any
changes; exported variables are not shared, but only copied.

Script Parameters

Users often need to pass parameter values to a script, such as a filename, date, etc. Scripts will take
different paths or arrive at different values according to the parameters (command arguments) that are
passed to them. These values can be text or numbers as in:

$./script.sh /tmp
$./script.sh 100 200

Within a script, the parameter or an argument is represented with a S and a number. The table lists some of
these parameters.

$0 Script name

$1 First parameter

$2, $3, etc. Second, third parameter, etc.
$* All parameters

$# Number of arguments

Using Script Parameters

4% Applications Places System @ (¢ [dp BB Tuejul 8, 5:53PM test3
= test3@CentOS:~ - o X

File Edit View Search Terminal Help

[test3@Cent0S ~]$ vi script3.sh A
[test3@Cent0S ~]$ bash script3.sh one two three

The name of this program is: script3.sh

The first argument passed from the command line is: one

The second argument passed from the command line is: two

The third argument passed from the command line is: three

All of the arguments passed from the command line are : one two three

All done with script3.sh
[test3@centos ~1$ I

Using your favorite text editor, create a new script file named script3.sh with the following contents:

#!/bin/bash

echo The name of this program is: $0

echo The first argument passed from the command line is: $1
echo The second argument passed from the command line is: $2
echo The third argument passed from the command line is: $3
echo All of the arguments passed from the command line are : $*

echo
echo All done with $0

Make the script executable with chmod +x. Run the script giving it three arguments as in: script3.sh
one two three, and the script is processed as follows:

$0 prints the script name: script3.sh

$1 prints the first parameter: one

$2 prints the second parameter: two

$3 prints the third parameter: three

S+ prints all parameters: one two three

The final statement becomes: 211 done with script3.sh

Output Redirection

«% Applications Places System @ b 4l = o = MonJul 7,12:50 PM test3
Bl test3@CentOS:~ = iaiEx

File Edit View Search Terminal Help

[root@Cent0S ~]# free>/tmp/free.out (~]
[root@Cent0S ~]# 1s -1 /tmp/free.out

-rw-rw-r--. 1 root root 230 Jul 7 12:49 /tmp/free.out

[root@Cent0S ~]# cat /tmp/free.out

total used free shared buffers cached
Mem: 1020176 922100 98076 ¢} 66608 473240
-/+ buffers/cache: 382252 637924
Swap: 1219576 0 1219576

[root@centos ~]# i

H

Most operating systems accept input from the keyboard and display the output on the terminal. However, in
shell scripting you can send the output to a file. The process of diverting the output to a file is called output
redirection.

The > character is used to write output to a file. For example, the following command sends the output of
free to the file /tmp/free.out:

$ free > /tmp/free.out

To check the contents of the /tmp/free. out file, at the command prompt type cat
/tmp/free.out.

Two > characters (>>) will append output to a file if it exists, and act just like > if the file does not already
exist.

Input Redirection

kes@kes:~/ifdemo/temp

File Edit View Search Terminal Help

[kes@kes temp]$./script8.sh
“Line count”
4

Dl

[kesgkes temp]s i

k

Just as the output can be redirected to a file, the input of a command can be read from a file. The process of
reading input from a file is called input redirection and uses the < character. If you create a file called
script8. sh with the following contents:

#!/bin/bash
echo “Line count”
wc -1 < /temp/free.out

and then execute it with chmod +x script8.sh ; ./script8.sh, itwill countthe number of
lines from the /temp/free.out file and display the results.

Section3

The if Statement

Conditional decision making using an i £

statement, is a basic construct that any if
useful programming or scripting language
must have. 4
When an 1 f statement is used, the ensuing Condition
actions depend on the evaluation of
specified conditions such as:
N N

e Numerical or string comparisons

e Return value of a command (0 for
success)

e File existence or permissions

statement(s) statement(s)

>rest of code <«

In compact form, the syntax of
an if statement is:

if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi
A more general definition is:

if condition
then
statements

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/Screenshot-line-count.png

else
statements
fi

#!/bin/bash

file=$S1

if [-f S$file]

then

echo —e “plik S$file istnieje”
else

”

echo —e “plik $file” nie istnieje
fi

$ touch plikl plik2 plik3 plikb
$ 1s plik*

plikl plik2 plik3 plikb

$ bash if-demo.sh plikl

plik plikl istnieje

$ bash if-demo.sh plik4

plik plik4 nie istnieje

Nested if

#!/bin/bash
echo “Wpisz pierwsza liczbe”
read argl
echo ,Wpisz druga liczbe”
read arg?2
echo , 1. Dodawanie”
echo ,2. Odejnowanie”
echo , 3. Mnozenie”
echo ,Wprowadz numer operacji: 1, 2 lub 3”7
read op
if [Sop —eq 1]
echo “Wynik dodawania: ™ $(($11+$12))
else

if [Sop -eq 2]
then
echo “wynik odejmowania: “ $(($11-$12))
else
if [Sop -eq 3]
then
echo “Wynik mnozenia: ™ $(($11*$12))
else
echo “Nie prawidlowa operacja”

fi
fi
fi

Konstrukcja elif

#!/bin/bash
echo ,podaj liczbe”
read liczba
if [$liczba -eq 100]
then
echo “liczba wynosi 100"
elif [$liczba —-gt 100]
echo ,liczba jest wieksza od 100"
else
echo ,liczba jest mniejsza od 100”
fi

Using the if Statement

The following i £ statement checks for the £ oo
/etc/passwd file, and if the file is found it e idy
displays the message

/etc/passwd exists.:

if [-f /etc/passwd]
then

echo "/etc/passwd exists."
fi

Notice the use of the square brackets ([]) to

delineate the test condition. There are many

other kinds of tests you can perform, such as

checking whether two numbers are equal to, greater than, or less than each other and make a decision
accordingly; we will discuss these other tests.

In modern scripts you may see doubled bracketsasin[[-f /etc/passwd]].Thisis notan error. It
is never wrong to do so and it avoids some subtle problems such as referring to an empty environment
variable without surrounding it in double quotes; we won't talk about this here.

You can use the i f statement to test for file attributes such as:

e File or directory existence
e Read or write permission
e Executable permission

For example, in the following example:

if [-f /etc/passwd] ; then
ACTION

fi

the i f statement checks if the file /etc/passwd is a regular file.
Note the very common practice of putting “; then” on the same line as the if statement.

bash provides a set of file conditionals, that can used with the i f statement, including:

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen30a.jpg

| Condition _§ ________ Meaning_________|

-e file Check if the file exists.

-d file Check if the file is a directory.

_f file Check i_f the file is_a regular fi_Ie (i.e., not a
symbolic link, device node, directory, etc.)

-s file Check if the file is of non-zero size.

-g file Check if the file has sgid set.

-u file Check if the file has suid set.

-r file Check if the file is readable.

-w file Check if the file is writable.

-x file Check if the file is executable.

You can view the full list of file conditions using the command man 1 test.
Example of Testing of Strings

You can use the i f statement to compare strings using the operator == (two equal signs). The syntax is as
follows:

if [stringl == string2] ; then
ACTION
fi

Let’s now consider an example of testing strings.

In the example illustrated here, the i £ statement is used to compare the input provided by the user and
accordingly display the result.

4% Applications Places System @) (o3 [4 ¢ = op @ Monjun30,12:21PM test3
test3@CentOS:~

File Edit View Search Terminal Help
#!/bin/bash F
Section that reads the input

echo " Enter any color code [R OR Y OR G]

read COLOR

echo $COLOR

Section that compares the entry and display a message

if ["$COLOR" == "R"]

then

echo "STOP! LEAVE WAY FOR OTHERS"

elif ["$COLOR" == =Y*]

then |
echo "GET READY YOUR WAY WILL BE OPEN SHORTLY" 1
elift [™$COLOR" == 2GY]

then

echo "MOVE.. IT IS UR TURN TO GO"

else

echo "INCORRECT COLOR CODE"
1 ji

:woll 4

4% Applications Places System @) (o3 [4 ¢ N p @ Monjun30,12:20PM test3

test3@CentOS:~

File Edit View Search Terminal Help
[test3@Cent0S ~1$ vim sam2.sh
[test3@Cent0S ~]1$ bash sam2.sh
Enter any color code [R OR Y OR G]
G
G
MOVE.. IT IS UR TURN TO GO
[test3@Cent0S ~]1$ bash sam2.sh
Enter any color code [R OR Y OR G]
Y
Y
GET READY YOUR WAY WILL BE OPEN SHORTLY
[test3@Cent0S ~]1$ bash sam2.sh
Enter any color code [R OR Y OR G]
R
R
STOP! LEAVE WAY FOR OTHERS
[test3@Cent0S ~]1$ bash sam2.sh
Enter any color code [R OR Y OR G] : B

B

=
1 1
INCORRECT COLOR CODE
[test3@Cent0S ~1$ |} L

Click the image to view an enlarged version

Numerical Tests

You can use specially defined operators with the i £ statement to compare numbers. The various operators
that are available are listed in the table.

-eq Equal to

-ne Not equal to

-gt Greater than

-1t Less than

-ge Greater than or equal to
-le Less than or equal to

The syntax for comparing numbers is as follows:
expl -op exp2

Example of Testing for Numbers

Let us now consider an example of comparing numbers using the various operators:

4% Applications Places System @) (o3 [Z ¢ = p @ Monjun30,12:44PM test3

test3@CentOS:~

File Edit View Search Terminal Help

#!/bin/bash Pl
Prompt for a user name...

echo "Please enter your age:"

read AGE

it ["$AGE™ -1t 28]1 || ["$AGE" -ge 58 1 ; then

echo "Sorry, you are out of the age range."

elif ["$AGE" -ge 20] && ["$AGE" -1t 30] ; then

echo "You are in your 20s"

elif ["$AGE" -ge 30] && ["$AGE" -1t 40] ; then

echo "You are in your 30s"

elif ["$AGE" -ge 40] && ["$AGE" -1t 50] ; then |
echo "You are in your 40s" :
fi

:woll g
&% Applications Places System @ o # 4+ = = Monjun30,12:46PM test3

test3@CentOS:~

File Edit View Search Terminal Help

[test3@Cent0S ~]$ vim sam3.sh
[test3@Cent0S ~]$ chmod a+x sam3.sh
[test3@Cent0S ~]$ bash sam3.sh
Please enter your age:

20

You are in your 20s

[test3@Cent0S ~]$ bash sam3.sh
Please enter your age:

30

You are in your 30s

[test3@Cent0S ~]$ bash sam3.sh
Please enter your age:

40

You are in your 40s

[test3@Cent0S ~]$ bash sam3.sh
Please enter your age:

50

Sorry, you are out of the age range.
[test3@Cent0S ~1% |} m

B

L

Click the image to view an enlarged version.

Arithmetic Expressions

R E T

[test3@Cent0S ~]$ expr 8 + 8
Arithmetic expressions can be evaluated in the 1°

. . [test3@Cent0S ~]$ echo $(expr 8 + 8)
following three ways (spaces are important!): 1

[test3@Cent0S ~]$ let x=(1 + 2) ; echo $x

. - . 3
e Using the expr utility: expr is a standard [test3gCent0S ~]$ echo $((x+1))
4
but somewhat deprecated program. The (test3ecentos ~1s I
syntax is as follows:

expr 8 + 8
echo $(expr 8 + 8)

e Usingthe s ((...)) syntax: Thisis the
built-in shell format. The syntax is as
follows:

echo S ((x+1))
e Using the built-in shell command 1et. The syntax is as follows:

let x=(1 + 2); echo $x
In modern shell scripts the use of expr is better replaced with var=$ ((...))

Click the image to view an enlarged version.

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch14_screen44.jpg

Section 1

String Manipulation
Let’s go deeper and find out how to work with strings in scripts.

A string variable contains a sequence of text characters. It can include letters, numbers, symbols and
punctuation marks. Some examples: abcde, 123, abcde 123, abcde-123, &acbde=%123

String operators include those that do comparison, sorting, and finding the length. The following table
demonstrates the use of some basic string operators.

Compares the sorting order of stringl

i 1> i 2 .
[string string2 | and string2.

Compares the characters in stringl with

[stringl == string2 | the characters in string2.

Saves the length of stringl in the variable

myLenl=${#mystringl} myLenl

Example of String Manipulation

kes@mkes: ~/ifdemo

File Edit Wiew 5Search Terminal Help

[kcs@kes ifdemo]$ 1s [~]
filel.txt
[kcs@kcs ifdemo]% cat ifdemol.sh
#!/bin/bash
if [%1 == %2] ; then

echo "The first string, %1. is the same as the second string, %2"
else

echo "The first string, %1, is not the same as the second string, %2"
fi
[kcs@kcs ifdemo]% ./ifdemol.sh Apple Orange
The first string, Apple, is not the same as the second string., 0Orange
[kcs@kecs ifdemo]$./ifdemcl.sh Apple Apple
The first string, Apple, is the same as the second string, Apple
[kcs@kcs ifdemo]% cat ifdemoZ.sh
#!'/bin/bash

file=%1
if [-f "sfile"”]
then
echo File $file exists
else
echo File %file does not exists ||
fi

[kcs@kcs ifdemo]% ./ ifdemo2.sh filel.txt

File filel.txt exists

[kcs@kes ifdemo]% ./fifdemo2.sh file2.txt

File fileZ.txt does not exists

[kcs@kcs ifdemo]$ I k

See the screen shot above.

In the first example, we compare the first string with the second string and display an appropriate message
using the i £ statement.

In the second example, we pass in a file name and see if that file exists in the current directory or not.
Click the image to view an enlarged version.

Parts of a String

E testl@localhost:~

File Edit View Search Terminal Help

At times, you may not need to compare or use |(testl@localhost ~1$ export name="bagend.hobbiton.com”
an entire string. To extract the first character ~[ltestl@localhost ~]$ loco=5{name:0:6}; echo Sloco

: [bagend
of a string we can specify: 8
9 P fy [testi@localhost ~]$ moto=S{name#*.}; echo Smoto

. . hobbiton.com
${string:0:1} Here0isthe offset in the |jtesti@localhost~$

string (i.e., which character to begin from)
where the extraction needs to start and 1 is the .
number of characters to be extracted.

&
1]
(1]

To extract all characters in a string after a dot (.), use the following expression: S {string#*.}

Sekcja3

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch15_screen05b.jpg

Boolean Expressions

Boolean expressions evaluate to either TRUE or FALSE, and results are obtained using the various
Boolean operators listed in the table.

The action will be performed only if both the

&& A conditions evaluate to true.

I OR The action will be performed if any one of the
conditions evaluate to true.

| NOT The action will be performed only if the

condition evaluates to false.

Note that if you have multiple conditions strung together with the & & operator processing stops as soon as a
condition evaluates to false. For example if you have 2 s«& B && Cand A is true but B is false, C will
never be executed.

Likewise if you are using the | | operator, processing stops as soon as anything is true. For example if you
have~ || B || CandAisfalse and B is true, you will also never execute C.

Tests in Boolean Expressions

«% Applications Places System @ = “ ¢ @ =B satjul26, 1:58PM Test User #1

=l testl@localhost:~

File Edit View Search Terminal Help

[testl@localhost ~]$ 1s

date2.out Desktop Downloads newfile.txt Public Templates testl.txt
date.out Documents Music Pictures scratch testl test2.txt
[testl@localhost ~]$ if [-e testl.txt]; then

> echo "The testl.txt file exists. Continue processing"

> else

> echo "The testl.txt file does not exists. Stop processing"

> exit 1

> fi

The testl.txt file exists. Continue processing

[testl@localhost ~1$]

| @ testl@Iocalhost:~ |

test3. txt

Video

)S

liJ é

Boolean expressions return either TRUE or FALSE. We can use such expressions when working with
multiple data types including strings or numbers as well as with files. For example, to check if a file exists,

use the following conditional test:

[—e <filename>]

Similarly, to check if the value of number1 is greater than the value of number?2, use the following

conditional test:

[Snumberl -gt Snumber2]

The operator —gt returns TRUE if number1 is greater than number?2.
sekcja3

The case Statement

The case statement is used in scenarios where the actual value of a variable can lead to different execution

Easier to read and write

Reduces complexity of
a program

Good alternative to nested,

multi-level if-then-else-fi

statements

Features of
Case
Statement

Easy to use

It enables you to compare
a variable against several
values at once

paths. case statements are often used to handle command-line options.

Below are some of the advantages of using the case statement:

It is easier to read and write.

It is a good alternative to nested, multi-level i f-then-else-fi code blocks.
It enables you to compare a variable against several values at once.

It reduces the complexity of a program.

Structure of the case Statement

Here is the basic structure of the
case Statement:

case expression in

patternl) execute
commands; ;

pattern?) execute
commands; ;

pattern3) execute
commands; ;

patternd) execute
commands; ;

*) execute
some default commands or
nothing ;;
esac

Case Statement

Expression

A

Case 1

]
False
¥

Case 2

]
False
¥

]
False
¥

Casen

]
False

W
Execute default

commands and exit

True

True

True

True

Execute comands and
exit

Execute comands and
exit

Execute comands and
exit

Execute comands and
exit

Example of the case Statement

4% Applications Places System @) & [

E) sam4.sh (~) - gedit
File Edit View Search Tools Documents Help

(SR

< [©) messages 3¢ |[| new-testl 3¢ []saml 3¢ |[¢|samlsh 3¢ | [+ sam2.sh 3¢ |[#) sam3.sh 3¢ |[¢) sam4sh 3

14#!/bin/sh

2 # Prompt user to enter a character
3 echo "Please enter a letter:"

4 read charac

5 case "$charac" in

[Egopen v (B save ‘z‘

6 a"|"A") echo "You have typed a vowel!" ;;

7 e"|"E") echo "You have typed a vowel!" ;;

8 "i"|"I") eche "You have typed a vowel

9 0"|"0") echo "You have typed a vowel!" ;;
10 u"|"uU") echo "You have typed a vowel!"
11) echo "You have typed a consonant!" ;;
12 esac
13 exit 0
14

shv TabWidth: 8 Ln14, Col 1 INS

| @ test: | sam4.sh (~) - gedit]

& 4 0 =

testl@localhosti~

File Edit View Search Terminal Help
[testl@localhost ~1$./sam4.sh
Please enter a letter:

e

[You have typed a vowel!
[testl@localhost ~1$./sam4.sh
Please enter a letter:

Iz

[You have typed a consonant!
[testl@localhost ~]$ |

Here's an example of a case statement, please click on the image to open it in a new tab.

Sekcja4

Looping Constructs

By using looping constructs, you can execute one or
more lines of code repetitively. Usually you do this until a
conditional test returns either true or false as is required.

Three type of loops are often used in most programming
languages:

. for
e while

e until

All these loops are easily used for repeating a set of
statements until the exit condition is true.

The *for’ Loop

Statement

W

1 Actions to be
[_‘ repeated
No |
e

YLS

Y

Next Code

Tue Jul 29, 3:24PM Testl

[~ [——|

= Applications Places System 0 & __-/

B O = Tejul20 347PM Test1

= for.sh (~) - gedit
File Edit view Search Tools Documents Help

Eiopen v (O save Undo

< | messages 3

1#!/bin/sh
2#

3 sum=0
4 for i
5 do

6 sum=$((Ssum+si))
7 done

8 echo "The
9

saml 3¢ samlsh sam2sh 3

in1234

sum of $i numbers is: $

& testiGlocaihost:= 3 forsh (~) - gedit

¥

[+ sam3sh 3¢

sam4.sh

shv TabWidth: 8~ Ln6, Col 19

File Edit View Search Terminal Help

[testl@localhost ~]$ chmod a+x for.sh |
[testl@localhost ~]$./for.sh

The sum of 4 numbers is: 10

[testl@localhost ~]$

%[forsh

INS

]
a
]

The for loop operates on each element of a list of items. The syntax for the for loop is:

for variable-name in 1ist

do

execute one iteration for each item in the
list until the Iist is finished

done

In this case, variable-name and 11 st are substituted by you as appropriate (see examples). As with
other looping constructs, the statements that are repeated should be enclosed by do and done.

The screenshots here show an example of the for loop to print the sum of numbers 1 to 4.

Click the image to view an enlarged version.

The while Loop

% Applications Places System 0 & =
L sc2.sh (~) - gedit
File Edit View Search Tools Documents Help

| E3Open v [save Undo

4] sc2.sh 'A.

#!/bin/bash

#

echo "Enter the number"

read no

fact=1

i=1

while [$i -le $no]

do
fact=$(($fact * $i))
1=$((%1 + 1))

done

echo "The factorial of $no is $fact”

shv TabWidth: 8v Ln1,Coll

- o x [

¢ @ =' satjul26, 3:11PM Test User #1

testl@localhost:~ 5 x]
File Edit View Search Terminal Help

[testl@localhost ~]$ chmod a+x sc2.sh A}
[testl@localhost ~]$ bash sc2.sh

Enter the number

6
The factorial of 6 is 720
[testl@localhost ~]$ bash sc2.sh
Enter the number

3
The factorial of 3 is 6
[testl@localhost ~]$ []

[sc2.sh (~) - gedit | B testl@localhost:~

=
A
]

The while loop repeats a set of statements as long as the control command returns true. The syntax is:

while condition is true
do

Commands for execution

done

The set of commands that need to be repeated should be enclosed between do and done. You can use any
command or operator as the condition. Often it is enclosed within square brackets ([]).

The screenshots here show an example of the while loop that calculates the factorial of a number.
Click the image to view an enlarged version.

The until loop

Activities ’~ GNOME Terminal v Mon 13:44

test2@OpenSUSE:~ x

Fle Edit View Search Terminal Help
[test2@0penSUSE~]#cat until.sh
#Until Loop - Example-1

echo "NUMBER"

mn=1
mx=10
until [$mn -gt $mx]
do
echo "$mn"
mn=$(($mn + 2))
done
[test2@0penSUSE~]#sh until.sh
NUMBER
1
3
5
7
9
[test2@0pensuUsSE~1#jl

The until loop repeats a set of statements as long as the control command is false. Thus it is essentially
the opposite of the whi 1e loop. The syntax is:

until condition is false
do
Commands for execution

done

Similar to the whi 1e loop, the set of commands that need to be repeated should be enclosed
between do and done. You can use any command or operator as the condition.

The screenshot here shows example of the unt i1 loop that displays odd numbers between 1 and 10.

Section5

Introduction to Script Debugging

While working with scripts and
commands, you may run into errors.
These may be due to an error in the
script, such as incorrect syntax, or
other ingredients such as a missing
file or insufficient permission to do
an operation. These errors may be
reported with a specific error code,
but often just yield incorrect or
confusing output. So how do you go
about identifying and fixing an
error?

Debugging helps you troubleshoot
and resolve such errors, and is one
of the most important tasks a system
administrator performs.

More About Script
Debugging

Before fixing an error (or bug), it is vital to know its source.

In bash shell scripting, you can run a script in debug mode by doing bash -x ./script file.
Debug mode helps identify the error because:

e It traces and prefixes each command with the + character.

e It displays each command before executing it.

e It can debug only selected parts of a script (if desired) with:
set -x # turns on debugging

set +x # turns off debugging
e Redirecting Errors to File and Screen

e In UNIX/Linux, all programs that run are given three open file streams when they are started as
listed in the table:

. .. File

Standard Input, by default the
stdin keyboard/terminal for programs run from 0
the command line

Standard output, by default the screen for

stdout programs run from the command line

Standard error, where output error

stderr
messages are shown or saved

e Using redirection we can save the stdout and stderr output streams to one file or two sepgrate files
i B4 0=

w® Applications Places System @) & G Tue Jul 29, 4:03PM Testl

r *sample.sh (~) - gedit - o x =] testl@localhost: -0 x
File Edit View Search Tools Documents Help File Edit View Search Terminal Help
Eopen v [Gisave | 2y Undo ® g4 gy [|[testl@localhost ~]$ 1s error.txt A .
- 1s: cannot access error.txt: No such file or directory

*samplesh X | [testl@localhost ~]$ bash sample.sh 2> error.txt

1#!/bin/sh [testl@localhost ~]$ 1s error.txt

2# error.txt

i‘f“)r:‘,’ AT 4 [testl@localhost ~]$ cat error.txt

5do sample.sh: line 6: syntax error near unexpected token " (' |
6 sum=((Ssum+$i)) sample.sh: line 6: ° sum=(($sum+$i))’

7 done sample.sh: line 7: syntax error near unexpected token “done'

8 echo “The sum of $i numbers is: $sum" sample.sh: line 7: “done'
1: ‘ls error [testl@localhost ~]$ |

shv TabWidth: 8v Ln10,Col 1 INS

% tsamplesh (=) - gedit || [@ test1@localhost:~

@
L

e On the left screen is a buggy shell script. On the right screen the buggy script is executed and the
errors are redirected to the file "error.txt".Using "cat" to display the contents of
"error.txt" shows the errors of executing the buggy shell script (presumably for further debugging).

Czesc3

Sectionl

Creating Temporary Files and Directories

Consider a situation where you want to retrieve 100 records from a file with 10,000 records. You will need
a place to store the extracted information, perhaps in a temporary file, while you do further processing on
it.

Temporary files (and directories) are meant to store data for a short time. Usually one arranges it so that
these files disappear when the program using them terminates. While you can also use touch to create a
temporary file, this may make it easy for hackers to gain access to your data.

The best practice is to create random and unpredictable filenames for temporary storage. One way to do
this is with the mktemp utility as in these examples:

The xxxxxxxx is replaced by the mktemp utility with random characters to ensure the name of the
temporary file cannot be easily predicted and is only known within your program.

TEMP=S$ (mktemp

/tmp/tempfile . XXXXXKXX) To create a temporary file

TEMPDIR=$ (mktemp -d To create a temporary
/tmp/tempdir . XXXXXXXX) directory

Example of Creating a Temporary File and Directory

&% Applications Places System @« “ ¢ 0 = SatJul 26, 4:03PM Test User #1

& testl@localhost:~ - 0 X%
File Edit View Search Terminal Help
[testl@localhost ~]$ 1s /tmp

uiareDD yun. Log
[testl@localhost ~]s I

First, the danger: If someone creates a symbolic link from a known temporary file used by root to the
/etc/passwd file, like this:

$ 1n -s /etc/passwd /tmp/tempfile
There could be a big problem if a script run by root has a line in like this:

echo $VAR > /tmp/tempfile
The password file will be overwritten by the temporary file contents.

To prevent such a situation make sure you randomize your temporary filenames by replacing the above line
with the following lines:

TEMP=$ (mktemp /tmp/tempfile.XXXXXXXX)
echo $VAR > $TEMP

Click the image to view an enlarged version.

Discarding Output with /dev/null

«® Applications Places System Q) \‘3 _,//
Bl testl@localhost:/home/testl

File Edit View Search Terminal Help

[root@localhost testl]# 1s -1 /dev/null

crw-rw-rw-. 1 root root 1, 3 Jul 26 13:32 JFISWLTINY
[root@localhost testl]#[find / > /dev/nullj

AZ —
21+ Stopped find / > /dev/null
[root@localhost testl]# [cat /dev/null]
[root@localhost testl]#

Certain commands like find will produce voluminous amounts of output which can overwhelm the console.
To avoid this, we can redirect the large output to a special file (a device node) called /dev/null. This file is
also called the bit bucket or black hole.

It discards all data that gets written to it and never returns a failure on write operations. Using the proper
redirection operators, it can make the output disappear from commands that would normally generate
output to stdout and/or stderr:

$ find / > /dev/null

In the above command, the entire standard output stream is ignored, but any errors will still appear on the
console.

Click the image to view an enlarged version.

Random Numbers and Data

Activities |~ GNOME Terminal v

test2@OpenSUSE:~ x

File Edit View Search Terminal Help
[test2@0penSUSE: ~]#echo $RANDOM
19561

[test2@0penSUSE: ~]1#echo $RANDOM
12887

[test2@0penSUSE: ~]#echo $RANDOM
19622

[test2@0pensSUSE: ~1#l

It is often useful to generate random numbers and other random data when performing tasks such as:

Performing security-related tasks.

Reinitializing storage devices.

Erasing and/or obscuring existing data.
Generating meaningless data to be used for tests.

Such random numbers can be generated by using the SRANDOM environment variable, which is derived
from the Linux kernel’s built-in random number generator, or by the OpenSSL library function, which uses
the FIPS140 algorithm to generate random numbers for encryption

To read more about FIPS140, see http://en.wikipedia.org/wiki/FIPS 140-2

The example shows you how to easily use the environmental variable method to generate random numbers.

How the Kernel Generates Random Numbers

http://en.wikipedia.org/wiki/FIPS_140-2

«% Applications Places System @ b 4l & N 4 A‘!i:‘ Monjul 28, 2:11PM test3
53 test3@CentOS:~ - o X
File Edit View Search Terminal Help

[test3@Cent0S ~]$ ls -1 /dev/*random (4

crw-rw-rw-. 1 root root 1, 8 Jul 28 11:51 PLEWALLLEN
crw-rw-rw-. 1 root root 1, 9 Jul 28 11:51 PLEWATELGEN

[test3@Cent0s ~1$ i

Some servers have hardware random number generators that take as input different types of noise signals,
such as thermal noise and photoelectric effect. A transducer converts this noise into an electric signal,
which is again converted into a digital number by an A-D converter. This number is considered random.
However, most common computers do not contain such specialized hardware and instead rely on events
created during booting to create the raw data needed.

Regardless of which of these two sources is used, the system maintains a so-called entropy pool of these
digital numbers/random bits. Random numbers are created from this entropy pool.

The Linux kernel offers the /dev/random and /dev/urandom device nodes which draw on the entropy pool
to provide random numbers which are drawn from the estimated number of bits of noise in the entropy
pool.

/dev/random is used where very high quality randomness is required, such as one-time pad or key
generation, but it is relatively slow to provide vaules. /dev/urandom is faster and suitable (good enough)
for most cryptographic purposes.

Furthermore, when the entropy pool is empty, /dev/random is blocked and does not generate any number
until additional environmental noise (network traffic, mouse movement, etc.) is gathered whereas
/dev/urandom reuses the internal pool to produce more pseudo-random bits.

Czesc3

Sekcjal

What Is a Process?

A process is
simply an instance
of one or more
related tasks

Operating System

Process 2

Linux
Kernel

Process n

=
™
3
o
<2

Physical and
logical resources

(threads) executing on your computer. It is not the same as a program or a command; a single program
may actually start several processes simultaneously. Some processes are independent of each other and
others are related. A failure of one process may or may not affect the others running on the system.

Processes use many system resources, such as memory, CPU (central processing unit) cycles, and
peripheral devices such as printers and displays. The operating system (especially the kernel) is responsible
for allocating a proper share of these resources to each process and ensuring overall optimum utilization.

Process Types

A terminal window (one kind of command shell), is a process that runs as long as needed. It allows users to
execute programs and access resources in an interactive environment. You can also run programs in the
background, which means they become detached from the shell.

Processes can be of different types according to the task being performed. Here are some different process
types along with their descriptions and examples.

Process ..

Need to be started by a user, either at a

Lﬁfg:gg;e command line or through a graphical interface ?iarlz?c;x to
such as an icon or a menu selection. +1op
Batch Automatic processes which are scheduled from
updatedb

Processes and then disconnected from the terminal. These

tasks are queued and work on a FIFO (First In,
First Out) basis.

Server processes that run continuously. Many

are launched during system startup and then wait h_ttpd,
Daemons o R : xinetd,

for a user or system request indicating that their sshd

service is required.

Lightweight processes. These are tasks that run

under the umbrella of a main process, sharing

memory and other resources, but are scheduled nome-
Threads and run by the system on an individual basis. An ?erminal

individual thread can end without terminating firefox '

the whole process and a process can create new

threads at any time. Many non-trivial programs

are multi-threaded.

Kernel tasks that users neither start nor terminate

and have little control over. These may perform kswapd0,
Kernel . . . ! -

actions like moving a thread from one CPU to migration,
Threads - . . ;

another, or making sure input/output operations ksoftirqd

to disk are completed.

Process Scheduling and States

When a process is in a so-
called running state, it

means it is either currently Run Queue
executing instructions on a
CPU, or is waiting for a Process 1 CPU

share (or time slice) so it
can run. A critical kernel

routine called the scheduler Process 2

constantly shifts processes

in and out of the CPU, Process 3 scheduler
sharing time according to i
relative priority, how much

time is needed and how Process 4

much has already been

granted to a task. All Process 5

processes in this state reside

on what is called a run

queue and on a computer

with multiple CPUs, or cores, there is a run queue on each.

However, sometimes processes go into what is called a sleep state, generally when they are waiting for
something to happen before they can resume, perhaps for the user to type something. In this condition a
process is sitting in a wait queue.

There are some other less frequent process states, especially when a process is terminating. Sometimes a
child process completes but its parent process has not asked about its state. Amusingly such a process is
said to be in a zombie state; it is not really alive but still shows up in the system's list of processes.

Process and Thread IDs

At any given time there are always multiple processes being executed. The operating system keeps track of
them by assigning each a unique process ID (PID) number. The PID is used to track process state, cpu
usage, memory use, precisely where resources are located in memory, and other characteristics.

New PIDs are usually assigned in ascending order as processes are born. Thus PID 1 denotes the init
process (initialization process), and succeeding processes are gradually assigned higher numbers.

The table explains the PID types and their descriptions:

ID Type

Process ID (PID)

Parent Process ID (PPID)

Thread ID (TID)

User and Group IDs

Many users can access a
system simultaneously, and
each user can run multiple
processes. The operating
system identifies the user who
starts the process by the Real
User ID (RUID) assigned to
the user.

The user who determines the
access rights for the users is
identified by the Effective UID
(EUID). The EUID may or
may not be the same as the
RUID.

Users can be categorized into
various groups. Each group is
identified by the Real Group

Unique Process ID number

Process (Parent) that started this

process

Thread ID number. This is the same as
the PID for single-threaded processes.
For a multi-threaded process, each
thread shares the same PID but has a

unique TID.

USER IDS

oY
|4

L

RUID

Identifies the user
who started the process

b &

EUID

Determines the access
rights of the user

USER GROUP IDS
%

ol
e,

RGID

Identifies the group
that started the process

3 &

EGID

Determines the access
rights of the group

Py

3

ID, or RGID. The access rights of the group are determined by the Effective Group ID, or EGID. Each
user can be a member of one or more groups.

Most of the time we ignore these details and just talk about the User ID (UID).

More About Priorities

At any given time,
many processes are

AR Process 1 Process2 Process3 - - Process n
running (i.e., in the
run queue) on the
SyStem HOWEVEI’, a Nice VaIUe -20 -19 -1 8 19

CPU can actually

accommodate only

one task at a time,

just like a car can Elapsed Time 0 1 2 n
have only one driver

at a time. Some

processes are more important than others so Linux allows you to set and manipulate process priority.
Higher priority processes are granted more time on the CPU.

The priority for a process can be set by specifying a nice value, or niceness, for the process. The lower the
nice value, the higher the priority. Low values are assigned to important processes, while high values are
assigned to processes that can wait longer. A process with a high nice value simply allows other processes
to be executed first. In Linux, a nice value of -20 represents the highest priority and 19 represents the
lowest. (This does sound kind of backwards, but this convention, the nicer the process, the lower the
priority, goes back to the earliest days of UNIX.)

You can also assign a so-called real-time priority to time-sensitive tasks, such as controlling machines
through a computer or collecting incoming data. This is just a very high priority and is not to be confused
with what is called hard real time which is conceptually different, and has more to do with making sure a
job gets completed within a very well-defined time window.

Section2

The ps Command (System V Style)

.

PID TTY
2316
2327
2335
2336
2354
2362
2364
2366
2386
2387
2388
2391
2395
2401
2402
2406
2407
2408
2410
2412
2413
2416
2417
2420
2432
2436
2438
2444
2448
2458
2466
2467
2468
2469

R I B e B B e I T R B B e B I B It e R B e I N B S B I R B R)

TIME

File Edit View Search Terminal Help
[testl@localhost ~]$ ps

-u testl

CcMD
gnome-keyring-d
gnome-session
dbus-launch
dbus-daemon
gconfd-2
gnome-settings-
seahorse-daemon
gvfsd

metacity
gnome-panel
nautilus
bonobo-activati
gnome-volume-co
vmtoolsd

python
restorecond
bluetooth-apple
polkit-gnome-au
gnome-power-man
gvfs-gdu-volume
gpk-update-icon
nm-applet
pulseaudio
gdu-notificatio
trashapplet
wnck-applet
gconf-helper
gvfs-gphoto2-vo
gvfs-afc-volume
gvfsd-trash
gnote
clock-applet
gdm-user-switch
notification-ar

testl@localhost:~

ps provides information about currently running processes, keyed by PID. If you want a repetitive update

of this status, you can use top or commonly installed variants such as htop or atop from the command line,

or invoke your distribution’s graphical system monitor application.

ps has many options for specifying exactly which tasks to examine, what information to display about

them, and precisely what output format should be used.

Without options ps will display all processes running under the current shell. You can use the —u option to

display information of processes for a specified username. The command ps -ef displays all the

processes in the system in full detail. The command ps -eT.f goes one step further and displays one line
of information for every thread (remember, a process can contain multiple threads).

The ps Command (BSD Style)

ps has another style of option specification which stems from the BSD variety of UNIX, where options are
specified without preceding dashes. For example, the command ps aux displays all processes of all users.
The command ps axo allows you to specify which attributes you want to view.

The following tables shows sample output of ps with the aux and axo qualifiers.

Output

ps aux

USER PID
root 1

sCPU
0.0

SMEM VSZ

0.0

RS'S
19356 1292 »

Ss

TTY STAT START TIME COMMAND

Feb27 0:08

/sbin/init

root 2 0.0 0.0 O 0 ? S Feb27 0:00
[kthreadd]
root 3 0.0 0.0 O 0 ? S Feb27 0:27

[migration/0]

Output

STAT PRI PID %CPU COMMAND
SIS 20 1 0.0 init

S 20 2 0.0 kthreadd
ps aux

stat,priority,pid, pcpu,comm S -100
3 0.0 migration/O0

The Process Tree

))) téstZé&péﬁUéél pstree
At some pomt one of your appllcatlons may stop systemd—r—ModemManager—2*[{ModemManager}]

H H H it 3+ [VBoxClient——{VBoxClient}]
working properly. How might you terminate it L VBoxClient—2e [{VBoxClient}]
accounts - daemon——2* [{accounts-daemon}]
H : —agetty
pstree displays the processes running on the Lt~ 9pt - Bua- Likin=r—dtiis - edsion
system in the form of a tree diagram showing 3+ [{at-spi-bus-laun}]
H H H —at-spi2-registr—({at-spi2-registr}
the relationship between a process and its parent [avabe - atas pi——avah - ataind
process and any other processes that it created. -avahi - daemon
Repeated entries of a process are not displayed, Bt g {eorordt)
and threads are displayed in curly braces. —cron
—cupsd
. -2+ [dbus - daemon)
To terminate a process you can type ki1l - —gbusvflaunch — :
SIGKILL <pid> or kill -9 <pid>. W s e RS L i L

Note however, you can only Kill your own
processes: those belonging to another user are off limits unless you are root.

Click the image to view an enlarged version.

top

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen18.jpg

top - 16:14 55 w d :hn 14:40 1 usars load average: 0.48, 0. 20, 0.11
H H H H H Tasks: 1687 total 2 rumning,. 184 slesping 0 stopped 1 zosbie
While a static view of what the system is doing s 23 0. s10 sy, 8.0 ni. 89.7 15 0.0 v, 8.0 51, 8.2 5. 8.8t
KiB Mem 1020440 total PIE5E used TIBA free 20390 buffers

is useful, monitoring the system performance — «s swe: 158266 toal. 632016 es. 957128 free. 2U85I2 <ocnad

»

live over time is also valuable. One option L o T a0 e
would be to run ps at regular intervals, say, 220 teat2 20 0 2126148 189700 Aé?f» $ 0997 1455 2633 41 griearahalt
gvery two minutes. A better alternative is t0 USE (1o it 30 o iisis tie ik ded f i 0 m o veesciset
. 19783 test2 20 0 1157754 187008 17036 4 0.684 2003 6:55.7) fireton
top to get constant real-time updates (every two s tsa 30 0 232 £264 41445 0.302 0.812 5:09.90 soffice bin
ds by default) until you exit by typing 2w 3 oo e G S aan o el
secon 2 raot 20 0 B 0 0500000600 00036 Kihressd
o . top clearly highlights which processes are St 0.2 8 0 0500000800 00060 karkerso ik
- T reot rt 0 9 L} 050,000 0.000 0:00.35 migration/d
consuming the most CPU cycles and memory Bret 2 8 8 0 0500008600 0:08.00 reue/0
(using appropriate commands from within top.) et 2 o @ o 050 e
12 root 2 0 ° ° 0 R 0,000 9,000
7 reot 0] 9 0 050,000 0000
4 reot 20 0 k] 0 05 0,000 0.000
reot 20 0 7 0 05 0,000 9.900
6 reot 2 0 9 0 05 0.000 0.000
17 reot 20 0 b} Q 05 0,000 0.000

First Line of the top Output

__\oad avarage: 048, .30, 0.13

o) b B ion H 8) ey, 201
The first line of the top output displays a qUICK 55, 2 te a0 sy B.ost w07 12 08 o0n sasi 0.8
KiB Mem 1020440 total PEI56 uses TIRAL free 20390 buffers

summary of what is happening in the system KiB Swap: 1589244 total. GI2LN6 used, 957128 free, 246532 cached
including:

»

l 812204 2108 3:$ 5 2 29 9.206 UO 12 33 wluwno

PID USER
1987 test2

9
3185 test2 20 0 &1 nM 1176 § 9.634 : 37 T:28.85 3d_espesk
2229 testd 20 0 2126148 189700 12072 S 0.997 18.59 26:32.4) v-ea-qm\.
H I h h b 2749 teat2 20 0 T48692 16%028 3252 S 0.997 16.56 6:35.50 orca
® 1270 teat2 20 0 103428 163 168 S 0,684 0006 25:20.50 YBoxtlient
OW Ong t e SyStem aS een up 19783 tent2 2 0 1157754 187008 17036 5 0.684 1002 6:55.7) firefon
15454 tent? 0 0 2341924 0 4144 5 0302 0. 302 5:00.20 soffice.bin
e How many users are logged on I3 teet 20 0 G2 1006 109 5 0.933 1732 107,41 weas-eerninel
. 1 reot 0 0 ATS64 Fe) 1224 5 0.0090 9.200 0:02.63 systend
e What is the load average 20t 20 0 0 0 0500000600 01003 kihessd
3 reot 20 0 @ 0 0S5 0,000 .00 0:20.02 ksoftirgd/0
S reot 0.2 ? % 0S5 0.000 00 0:00.00 kwarker/0: 04
T reot rn 0 9 L] 0S5 0.000 0.000 0:00.35 migration/d
H 8 reot 2 0 Q L] 0S0.000 0000 0:00.00 rewe/0
The load average determines how busy the 9reet .2 0 6 0 0500000000 0.00.00 reub/0
- 10 reot 20 0 [0 0S 0,000 0.000 0 1) l oy preeept
system is. A load average of 1.00 per CPU ilreot 3 0 8 0 05000000 02 :
. . . 12 root 20 L] L ° O R 0,000 0,000 0:
13 reot 20 L) Q Q 050,000 0.0 4]
indicates a fully subscribed, but not overloaded, =t = ¢ ¢ & ssememm ¢
H 15 re 20 0 7 [05 0,000 0.900 0
system. If the load average goes above this e B N
17 reot 20 0 D] Q 0S5 0,000 0.000 0

value, it indicates that processes are competing
for CPU time. If the load average is very high, it might indicate that the system is having a problem, such
as a runaway process (a process in a non-responding state).

Second Line of the top Output

M.}& i -.nx“.udo_. Asaara. Jead acecage. 058, 2.0,
‘k- 167 total 2 runing. 164 slesps 0 stopped 1 zosbie

The second line of the top output displays the e s i St e A N R R e e
KiR Mem 1020440 total PIE5E used TIRM free 20390 buffers

total number of processes, the number of ©B Swsp: ISER44 fotal. GI2UM6 uses, USTIZE free, 20ASI2 cached

S WP EN TINE+ COMMAND

»

runnlng’ Sleeplng’ s_topped and Zomble . 1 3. 9) f‘?;‘\ﬂ ?'.(S12.9 0 9 D. 206 140 }'2 33 w\)‘ulxo
processes. Comparing the number of running 28155 5 0508 W50 Aé?f» 30,997 10,59 26:32.41 griee ahall
- - 2749 teat2 20 0 T48692 16%023 3252 5 0,997 16.56 6:35.50 orca

processes with the load average helps determine e« % o i i soesean s 8 s
if the system has reached its capacity or perhaps i i % o e mecosming Son e e
a particular user is running too many processes. 1ot 3 0 4el A 9250000 024 0026 wyetess
The stopped processes should be examined to Jowt. B2 % ¥ FRMANAN LEE e
see if everything is running correctly Brest 2 0 8 0 030000000 00080 receso

9 reot 2 0 L] [} 0S0.000 0.000 0:00.00 reut/0

Hrwt 3 0 8 0 050000060 035 reen
Click the image to view an enlarged version. Bret 2 0 8 0 050000000 00500 reeth

14 reo k] s D 0. 00 rowods9

Sret M 0 8 0 0300000900 0:09.00 recenss

6 reot 2 0 9 0 050000 0000 0:00.00 reu_sched

17 reot 20 0 b} Q 0SO0000 0000 0:00.00 revos/

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen19.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen20.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen21.jpg

Third Line of the top Output

top 13:55 up 4 cays, 14:40, J users, load average: 0.48, 0.20, 0.11

The third line of the top output indicates how jasa. el el 2 nenisg. d6d alssgioa. 0 atsssd.dassis
the CPU time is being divided between the USErsS i fa i sl s ce: woims e aves coms
(us) and the kernel (sy) by displaying the

PID USER RES
1987 test2 Pt

‘ 387

percentage of CPU time used for each. Rt 2 A 109700 12072 5 0.997 18,59 26.32.41 grima ahelt
7749 teat2 20 O 748842 163028 3252 5 0.997 16.56 6.35.50 oeca ;
1270 teat2 20 0 2 i3 168 S 0,684 0,016 25:20.50 VBox(Client
- - 19783 tent2 2N 01 6:55.72 fireton
The percentage of user jobs running at a lower s w2 o 2o 0:07 41 rome-tarinst
p_riority (niceness -_ni) is then listed. Idle r_node - 008,38 vowesst
(id) should be low if the load average is high, Sret 0. 8 0:08.80 kwarker /0. 04
. R e 7 ceot 0 9 0:00.35 migration/d
and vice versa. The percentage of jobs waiting Bret 2 0 8 0:00.2 reue/o
(wa) for I/O is listed. Interrupts include the Mewt: 2 0 ¢ $:32.13 reuprvmpt
percentage of hardware (hi) vs. software B B4 e e
interrupts (si). Steal time (st) is generallyused &0 % 5 & 0.0
. - - - - - 1 2 0 9 0:00
with virtual machines, which has some of itsidle 7 reer 2 o 0:00

CPU time taken for other uses.

Click the image to view an enlarged version.

Fourth and Fifth Lines of the top Output

top - 16:14:55 wp 4 days, 14:40 1 usars load average: 0.48, 0. 20, 0.1
Tasks: 187 total 2 runing. 184 slesping 0 stopped 1 zonbie

The fourth and fifth lines of the :
top output indicate memory usage, which is 1D Seap: ISEN44 teral. SO2AMG uned. 957178 rree.
divided in two categories:

20380 buffers
2452 cacred

’EN 7 [
206 140:12.33 pulsessdio

1336 5 12.29

1987 test2 10 3 12.2
444216 MM 11765 9.634 0

3185 test2 20 0 37 T:28.85 3d_espesk
2229 test2 20 0 2126148 189700 12072 S 0.997 18.59 26:32.41 gnosm-shell
. . 2749 teat2 20 o 16%28 3252 S 0997 16.56 6:35.50 orca
* Physical memory (RAM) —displayed on o s 2 9 i b L e
line 4. W1 teet 2 0 G007 10 1000 5 0741 raas-tarminat
- - reot AT564 744 1224 5 63 systend
e Swap space — displayed on line 5. 2ret 2 0 s o s 0:00.3% Kiwesdd
3 reot 20 0 b 9 0 Lo
S reot 020 2 0 0 0:0 '
i i 7 : v!‘ 0 3 :) 0 0 0:. 3 ',
Both categories display total memory, used - 328 '8 & @# 2:00.80 rech/o
10 » 20 0 o 0 05 0.0 0:32.17 reu preesp
memory, and free space. i r 2 0 & 0 050 0:23.53 revop/
2 0 ° ° RO, 0:
0] Q 0 0s0 0:04
20 0] 9 0500 0:0
. 20 0 7 0 050 0:08
You need to monitor memory usage very 2 8 o oidwmem ow
2 ? Q 0,000 9.000

carefully to ensure good system performance.

Once the physical memory is exhausted, the system starts using swap space (temporary storage space on
the hard drive) as an extended memory pool, and since accessing disk is much slower than accessing
memory, this will negatively affect system performance.

If the system starts using swap often, you can add more swap space. However, adding more physical
memory should also be considered.

Click the image to view an enlarged version.

Process List of the top Output

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen22.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen23.jpg

Each line in the process list of the

top output displays information about a process. o Town
- top - 16:14:55 wp 4 Ay, 14:00] usars load aver 0.48, 0. 0, 0.13
By default, processes are ordered by h|ghest Tasks: 167 total. 2 rumning. 164 slesping. 0 stomped. - ¥ Soshis
Wpuls 2.0 us. 0.0 »y 0.0ni, 89.7 14, 0.0 ua, 0.0 0:, 0.2 i, 0.0 st

CPU usage. The following information about — jif fes 1020440 tetal. sdssse wses. 7adad frae 20340 btfers

KiB Swap: 1589244 total 612156 uses

each process is displayed: . R ~TTee COMD

1987 test2 1 44220 10 13% 206 140:12.33 pulsessdio

3185 test2 20 s 5 0.287 7:28.85 3d_espesk
2229 testd 2 <

Process Identification Number (PID) T

Process owner (USER) ihatd teets

Priority (PR) and nice values (NI) "1 oot

Virtual (VIRT), physical (RES), and shared

memory (SHR)

Status (S)

e Percentage of CPU (%CPU) and memory
(%MEM) used

e Execution time (TIME+)

e Command (COMMAND)

ww N

ksoftirgd/0

00 kwarker /004

-y N
08033389
$888888828¢2¢

-

8

]
10
i
2
13
14

Interactive Keys with top

Besides reporting information, top can be utilized interactively for monitoring and controlling processes.
While top is running in a terminal window you can enter single-letter commands to change its behaviour.
For example, you can view the top-ranked processes based on CPU or memory usage. If needed, you can
alter the priorities of running processes or you can stop/kill a process.

The table lists what happens when pressing various keys when running top:

t Display or hide summary information (rows 2 and 3)
Display or hide memory information (rows 4 and 5)

Sort the process list by top resource consumers

r Renice (change the priority of) a specific processes

k Kill a specific process

f Enter the top configuration screen

o Interactively select a new sort order in the process list
Section3

Load Averages

Load average is the average of the load number for a given period of time. It takes into account processes
that are:

e Actively running on a CPU.
e Considered runnable, but waiting for a CPU to become available.
e Sleeping: i.e., waiting for some kind of resource (typically, I/O) to become available.

The load average can be obtained by running w, top or uptime

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen24.jpg

Interpreting Load Averages
The load average is displayed using three different sets of numbers, as shown in the following example:

The last piece of information is the average load of the system. Assuming our system is a single-CPU
system, the 0.25 means that for the past minute, on average, the system has been 25% utilized. 0.12 in the
next position means that over the past 5 minutes, on average, the system has been 12% utilized; and 0.15 in
the final position means that over the past 15 minutes, on average, the system has been 15% utilized. If we
saw a value of 1.00 in the second position, that would imply that the single-CPU system was 100% utilized,
on average, over the past 5 minutes; this is good if we want to fully use a system. A value over 1.00 for a
single-CPU system implies that the system was over-utilized: there were more processes needing CPU than
CPU was available.

If we had more than one CPU, say a quad-CPU system, we would divide the load average numbers by the
number of CPUs. In this case, for example, seeing a 1 minute load average of 4.00 implies that the system
as a whole was 100% (4.00/4) utilized during the last minute.

Short term increases are usually not a problem. A high peak you see is likely a burst of activity, not a new
level. For example, at start up, many processes start and then activity settles down. If a high peak is seen in
the 5 and 15 minute load averages, it would may be cause for concern.

«® Applications Places System @ b ﬁ Lj : A;‘!i Wed Jul 30, 7:15PM test3
Bl test3@CentOS:~ = olEx
File Edit View Search Terminal Help

[test3@Cent0S ~]$ w (4
19:14:07 up 4:01, 2 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
test3 ttyl :0 13:37 5:37m 44.56s 0.11s pam: gdm-password
test3 pts/1 :0.0 17:12 0.00s 0.19s 0.00s w

[test3@Cent0s ~1$ i

Bl test3@Cent0OS:~ = o
File Edit View Search Terminal Help

[test3@Cent0S ~]$ uptime (A]
19:16:17 up 4:04, 2 users, load average: 0.00, 0.00, 0.00

[test3@Cent0s ~1$ i

(T

Background and Foreground Processes

Linux supports background and
foreground job processing. (A job in this oS e 1o

.. lrool@(entOS test3]# updatedb &
context is just a command launched from a (1] 24666

terminal window.) Foreground jobs run directly](root@Cent0s test3]# sleep 100

from the shell, and when one foreground job is | 2%} Done ipateds
running, other jobs need to wait for shell access |i2]+ stopped sleep 160
(at least in that terminal window if using the [root@Cent0S test3)# bg

e - .. g [2]+ sleep 108 &
QUI) until it is co_mpleted. Th_|s is fine when [root@Cent0S test3]# fg
jobs complete quickly. But this can have an géecu 100

adverse effect if the current job is going to take & /oo tacentos test3i#
long time (even several hours) to complete.

In such cases, you can run the job in the
background and free the shell for other tasks.
The background job will be eXeCUted at |0y
priority, which, in turn, will allow smooth

execution of the interactive tasks, and you can type other commands in the terminal window while the
background job is running. By default all jobs are executed in the foreground. You can put a job in the
background by suffixing & to the command, for example: updatedb &

You can either use CTRL-Z to suspend a foreground job or CTRL-C to terminate a foreground job and
can always use the bg and fg commands to run a process in the background and foreground, respectively.

Managing Jobs
The jobs utility displays all jobs running in

background. The display shows the job ID, state, -
and command name, as shown here.

jobs -1 provides a the same information as
jobs including the PID of the background jobs.

The background jobs are connected to the
terminal window, so if you log off,

the jobs utility will not show the ones started
from that window.

Click the image to view an enlarged version.

Section4

Scheduling Future Processes using at

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen35.jpg
https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen36.jpg

&% Applications Places System @ (¢ [Z N o =P Thujul 10, 12:14 PM test3

B test3@CentOS:~ — () 53

File Edit View Search Terminal Help
[test3@Cent0S ~]$ at now + 2 days | (2]

at> cat filel.txt |e¢ Specifies when the task needs to be
pt> <t0T> | ¢ performed after two days from now
job 3 at 2014- 11:58

[test3@Cent0S

This command specifies
the task to be performed.

Press CTRL-D here.

|

Suppose you need to perform a task on a specific day sometime in the future. However, you know you will
be away from the machine on that day. How will you perform the task? You can use the at utility program
to execute any non-interactive command at a specified time, as illustrated in the diagram:

cron

cron is a time-based scheduling utility program. It can launch routine background jobs at specific times
and/or days on an on-going basis. cron is driven by a configuration file called /etc/crontab (cron
table) which contains the various shell commands that need to be run at the properly scheduled times.
There are both system-wide crontab files and individual user-based ones. Each line of a crontab file
represents a job, and is composed of a so-called CRON expression, followed by a shell command to

execute.

The crontab —e command will open the crontab editor to edit existing jobs or to create new jobs. Each
line of the crontab file will contain 6 fields:

MIN Minutes 0 to 59
HOUR Hour field 0to 23
DOM Day of Month 1-31
MON Month field 1-12

DOW Day Of Week 0-6 (0 = Sunday)

Any command to be

CMD Command
executed

Examples:
1. The entry "* * * * * [ysr/local/bin/execute/this/script.sh” will schedule a job to execute 'script.sh' every
minute of every hour of every day of the month, and every month and every day in the week.

2. The entry "30 08 10 06 * /home/sysadmin/full-backup™ will schedule a full-backup at 8.30am, 10-June
irrespective of the day of the week.

sleep

delayed or suspended. Suppose, for e Vot “

H H test2@0penSUSE:~> cat sleep.sh
example, an application has read and #1/bin/bash
processed the contents of a data file and echo "The system will go to sleep mode for 15 seconds...
then needs to save a report on a backup ~ t=eP 13

; echo "Hi, I am awake.

system. If the backup system is currently test2@opensuse:~= ./sleep.sh
busy or not available, the application can be ['® system wAll go to sieep mode for 13 seconds. ..
made to sleep (wait) until it can complete test2p0pensuse:-= |
its work. Such a delay might be to mount

the backup device and prepare it for writing.

sleep suspends execution for at least the
specified period of time, which can be
given as the number of seconds (the
default), minutes, hours or days. After that
time has passed (or an interrupting signal
has been received) execution will resume.

Syntax:
sleep NUMBER[SUFFIX]...
where SUFFIX may be:
1. s for seconds (the default)
2. m for minutes
3. h forhours
4. d for days

sleep and at are quite different; sleep delays execution for a specific period while at starts execution at a
later time.

https://courses.edx.org/c4x/LinuxFoundationX/LFS101x/asset/LFS01_ch16_screen43.jpg

